Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Genetic variation in natural stocks of Sardina pilchardus (sardines) from the western Mediterranean Sea
Download PDF
Download PDF
  • Original Article
  • Published: 01 May 1997

Genetic variation in natural stocks of Sardina pilchardus (sardines) from the western Mediterranean Sea

  • M M Ramon1 &
  • J A Castro1 

Heredity volume 78, pages 520–528 (1997)Cite this article

  • 916 Accesses

  • 30 Citations

  • Metrics details

Abstract

Eleven enzymes coded by 15 loci (ADH*, SOD*, SDH*, LDH-1*, LDH-2*, ME-1*, ME-2*, GPI-1*, GPI-2*, IDH*, MDH-1*, MDH-2*, PGM*, AAT* and CK*) were studied using electrophoretic methods in order to characterize stocks of sardines from the western Mediterranean Sea. The results showed differentiated groups distributed throughout the area studied. They did not form a panmictic population, but they existed as semi-independent, although not completely isolated, breeding units with an estimation of migration of Nem = 3.1 (number of migrants per generation). In the LDH-1 system a north-south cline was detected. We have also detected a discontinuity between the Alboran and the rest of the Mediterranean populations sampled at the enzymatic level. This result confirms the action of the Almeria–Oran front as a barrier that produces discontinuities as detected in other marine species.

Similar content being viewed by others

Mitochondrial genomes of the European sardine (Sardina pilchardus) reveal Pliocene diversification, extensive gene flow and pervasive purifying selection

Article Open access 28 December 2024

Cloning, computational analysis and expression profiling of steroid 5 alpha-reductase 1 (SRD5A1) gene during reproductive phases and ovatide stimulation in endangered catfish, Clarias magur

Article Open access 09 November 2023

Sardinian deer increase feeding diversity within sheltering vegetation in a fragmented Mediterranean landscape

Article Open access 18 December 2024

Article PDF

References

  • Alemany, F, and Alvarez, F. 1993. Growth differences among sardine (Sardina pilchardus Walb.) populations in Western Mediterranean. Sci Mar, 57, 229–234.

    Google Scholar 

  • Allendorf, F W, Mitchell, N, Ryman, N, and Stähl, G. 1977. Isozyme loci in brown trout (Salmo trutta L.): detection and interpretation from population data. Hereditas, 86, 179–190.

    Article  CAS  Google Scholar 

  • Altukhov, Y P, and Salmenkova, E A. 1987. Stock transfer relative to natural organization, management and conservation of fish populations. In: Ryman, N. and Utter, F. (eds) Population Genetics and Fishery Management, pp. 333–344. University of Washington Press, Seattle.

    Google Scholar 

  • Carvalho, G R, and Hauser, L. 1994. Molecular genetics and the stock concept in fisheries. Rev Fish Biol Fish, 4, 326–350.

    Article  Google Scholar 

  • Chabanaud, P. 1926. Sur les clupeides du genre Sardina et de divers genres voisins. Bull Soc Zool France, 51, 8–16.

    Google Scholar 

  • Clayton, J W, and Tetriak, D N. 1972. Amine-citrate buffers for pH control in starch gel electrophoresis. J Fish Res Board Can, 29, 1169–1172.

    Article  CAS  Google Scholar 

  • Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package). Version 3.5c. Univ. of Washington, Seattle.

  • Furnestin, J. 1952. Biologie de clupeides mediterranees. Journées d'Etudes du Laboratoire Arago (Suppl. No. 3 a Vie et Milieu), 2, 96–116.

    Google Scholar 

  • Gyllensten, U. 1985. The genetic structure of fish: differences in the intraspecific distribution of biochemical genetic variation between marine, anadromous, and freshwater species. J Fish Biol, 26, 691–699.

    Article  Google Scholar 

  • Harris, H, and Hopkinson, D A. 1976. Handbook of Enzyme Electrophoresis in Human Genetics. North-Holland Publishing Co., Amsterdam, The Netherlands.

    Google Scholar 

  • Jamieson, A. 1973. Genetic ‘tags’ for marine fish stocks. In: Hardin, J. F. R. (ed.) Sea Fisheries Research, pp. 91–99. Elek Science, London.

    Google Scholar 

  • Laskaridis, K. 1948. Study of the biology of sardine (Clupea pilchardus Walb.) in Greek waters. Prakt Hell Hydrobiol Fish Bull, 85, 561–568.

    Google Scholar 

  • Lee, J Y. 1962. Sardines de l'Atlantique et sardines de la Mediterranée. Différences morphologiques, biologiques et sérologiques. Conseil International pour l'Exploration de la Mer. Council Meeting. Comité de la Sardine. No. 14, 1–5.

  • Nei, M. 1972. Genetic distance between populations. Am Nat, 106, 283–292.

    Article  Google Scholar 

  • Powers, D A, Lauerman, T, Crawford, D, Smith, M, Gonzalez-Villasenor, I, and Dimichele, L. 1991. The evolutionary significance of genetic variation at enzyme synthesizing loci in the teleost Fundulus heteroclitus. J Fish Biol, 39 (Suppl. A), 169–184.

    Article  CAS  Google Scholar 

  • Quesada, H, Zapata, C, and Alvarez, G. 1995a. A multilocus allozyme discontinuity in the mussel Mytilus galloprovincialis: the interaction of ecological and life-history factors. Mar Ecol Progr Ser, 116, 99–115.

    Article  CAS  Google Scholar 

  • Quesada, H, Beynon, C M, and Skibinski, D O F. 1995b. A mitochondrial DNA discontinuity in the mussel Mytilus galloprovincialis Lmk: Pleistocene vicariance biogeography and secondary intergradation. Mol Biol Evol, 12, 521–524.

    CAS  PubMed  Google Scholar 

  • Ridgway, G J, Sherburne, S W, and Lewis, R D. 1970. Polymorphism in the esterases of Atlantic herring. Trans Am Fish Soc, 99, 147–151.

    Article  CAS  Google Scholar 

  • Rodriguez, J, Garcia, A, and Rodriguez, V. 1979. Zooplanktonic communities of the divergence zone in the northwestern Alboran Sea. Mar Ecol, 3, 133–142.

    Article  Google Scholar 

  • Ryman, N. 1983. Patterns of distribution of biochemical genetic variation in salmonids: differences between species. Aquaculture, 33, 1–21.

    Article  Google Scholar 

  • Saavedra, C, Zapata, C, Guerra, A, and Alvarez, G. 1993. Allozyme variation in European populations of the oyster Ostrea edulis. Mar Biol, 115, 85–95.

    Article  CAS  Google Scholar 

  • Shaklee, J B. 1983. The utilization of isozymes as gene markers in fisheries management and conservation. Isozymes: Cum Top Biol Med Res, 11, 213–247.

    CAS  Google Scholar 

  • Shaklee, J B, Phelps, S R, and Salini, J. 1990. Analysis of fish stock structure and mixed-stock fisheries by electrophoretic characterization of allelic isozymes. In: Whitmore, D. H. (ed.) Electrophoretic and Isoelectric Focusing Techniques in Fisheries Management pp. 173–196. CRC Press, Boca Raton FL.

    Google Scholar 

  • Skaala, O, Dahle, G, Jørstad, K, and Nævdal, G. 1990. Interactions between natural and farmed fish populations: information from genetic markers. J Fish Biol, 36, 449–460.

    Article  Google Scholar 

  • Skrivanic, A, and Zavodnik, D. 1973. Migration of the sardine (Sardina pilchardus) in relation to hydrographical conditions of the Adriatic Sea. Neth J Sea Res, 7, 7–18.

    Article  Google Scholar 

  • Smith, P J. 1986. Genetic similarity between samples of the orange roughly Hoplostethus atlanticus from the Tasman Sea, south-west Pacific Ocean and north-east Atlantic Ocean. Mar Biol, 91, 173–180.

    Article  Google Scholar 

  • Smith, P J, Jamieson, A, and Birley, A J. 1990. Electrophoretic studies and stock concept in marine teleosts. J Cons int Explor Mer, 47, 231–245.

    Article  Google Scholar 

  • Sokal, R R, and Rohlf, F J. 1981. Biometry, 2nd edn. W. H. Freeman and Company, New York.

    Google Scholar 

  • Spanakis, E, Tsimenides, N, and Zouros, E. 1989. Genetic differences between populations of sardine, Sardina pilchardus, and anchovy, Engraulis encrasicolus, in the Aegean and Ionian Seas. J Fish Biol, 35, 417–437.

    Article  Google Scholar 

  • Stähl, G. 1987. Genetic population structure of Atlantic Salmon. In: Ryman, N. and Utter, F. (eds) Population Genetics and Fishery Management, pp. 121–140. University of Washington Press, Seattle.

    Google Scholar 

  • Svetovidov, A N. 1964. Rydy Tchernogo More. Zoologicheskii Institut Akademii Nauk SSSR. Moscow-Leningrad.

    Google Scholar 

  • Swofford, D L, and Selander, R B. 1989. BIOSYS-1. A computer program for the analysis of allelic variation in population genetics and biochemical systematics. Release 1.7. University of Illinois, Urbana, IL.

    Google Scholar 

  • Tintoré, J, La Violette, P E, Blade, I, and Cruzado, G. 1988. A study of an intense density front in the eastern Alboran Sea: the Almería-Oran front. J Phys Oceanogr, 18, 1384–1397.

    Article  Google Scholar 

  • Utter, F M. 1991. Biochemical genetics and fishery management: an historical perspective. J Fish Biol, 39 (Suppl. A), 1–20.

    Article  Google Scholar 

  • Ward, R D, Woodwark, M, and Skibinski, D O F. 1994. A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. J Fish Biol, 44, 213–232.

    Article  Google Scholar 

  • Weir, B S. 1990. Genetic Data Analysis. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Wilmot, R L, and Burger, C V. 1985. Genetic differences among populations of Alaskan sockeye salmon. Trans Am Fish Soc, 114, 236–243.

    Article  Google Scholar 

  • Wolf, V, Engel, W, and Faust, J. 1970. Zum Mechanismus der Diploidisierung in der Wirbeltierevolution: Koexistenz von tetrasomen und disomen Genloci der Isocitrat-dehydrogenasen bei der Regenbogenforelle (Salmo irideus). Humangenetik, 9, 150–156.

    CAS  PubMed  Google Scholar 

  • Wright, S. 1951. The genetical structure of populations. Ann Eugen, 15, 323–354.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Laboratori de Genètica, Departament de Biologia Fonamental i Ciències de la Salut, Facultat de Ciències, Universitat de les Illes Balears, (Balears), Palma de Mallorca, Spain

    M M Ramon & J A Castro

Authors
  1. M M Ramon
    View author publications

    Search author on:PubMed Google Scholar

  2. J A Castro
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to M M Ramon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramon, M., Castro, J. Genetic variation in natural stocks of Sardina pilchardus (sardines) from the western Mediterranean Sea. Heredity 78, 520–528 (1997). https://doi.org/10.1038/hdy.1997.81

Download citation

  • Received: 14 June 1996

  • Issue date: 01 May 1997

  • DOI: https://doi.org/10.1038/hdy.1997.81

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • genetic variation
  • isozyme polymorphism
  • sardine
  • fish stocks

This article is cited by

  • The current knowledge status of the genetic population structure of the European sardine (Sardina pilchardus): uncertainties to be solved for an appropriate fishery management

    • Marta Caballero-Huertas
    • Xènia Frigola-Tepe
    • Jordi Viñas

    Reviews in Fish Biology and Fisheries (2022)

  • First global approach: morphological and biological variability in a genetically homogeneous population of the European pilchard, Sardina pilchardus (Walbaum, 1792) in the North Atlantic coast

    • Tarik Baibai
    • Laila Oukhattar
    • Abdelaziz soukri

    Reviews in Fish Biology and Fisheries (2012)

  • Integrating fish and parasite data as a holistic solution for identifying the elusive stock structure of Pacific sardines (Sardinops sagax)

    • Rebecca E. Baldwin
    • Michael A. Banks
    • Kym C. Jacobson

    Reviews in Fish Biology and Fisheries (2012)

  • Identification of subpopulations in pelagic marine fish species using amino acid composition

    • Isabel Riveiro
    • Cástor Guisande
    • Isabel Maneiro

    Hydrobiologia (2011)

  • Genetic population structure of sardine (Sardina pilchardus) off Morocco detected with intron polymorphism (EPIC-PCR)

    • T. Atarhouch
    • M. Rami
    • A. Dakkak

    Marine Biology (2007)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited