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Conserved G-matrices of morphological and life-history traits
among continental and island blue tit populations

B Delahaie1, A Charmantier1, S Chantepie2, D Garant3, M Porlier3 and C Teplitsky1

The genetic variance–covariance matrix (G-matrix) summarizes the genetic architecture of multiple traits. It has a central role in
the understanding of phenotypic divergence and the quantification of the evolutionary potential of populations. Laboratory
experiments have shown that G-matrices can vary rapidly under divergent selective pressures. However, because of the
demanding nature of G-matrix estimation and comparison in wild populations, the extent of its spatial variability remains largely
unknown. In this study, we investigate spatial variation in G-matrices for morphological and life-history traits using long-term
data sets from one continental and three island populations of blue tit (Cyanistes caeruleus) that have experienced contrasting
population history and selective environment. We found no evidence for differences in G-matrices among populations.
Interestingly, the phenotypic variance–covariance matrices (P) were divergent across populations, suggesting that using P as a
substitute for G may be inadequate. These analyses also provide the first evidence in wild populations for additive genetic
variation in the incubation period (that is, the period between last egg laid and hatching) in all four populations. Altogether, our
results suggest that G-matrices may be stable across populations inhabiting contrasted environments, therefore challenging the
results of previous simulation studies and laboratory experiments.
Heredity (2017) 119, 76–87; doi:10.1038/hdy.2017.15; published online 12 April 2017

INTRODUCTION

A central goal in evolutionary biology is to predict if and how natural
populations will adapt to changing environmental conditions. This has
become increasingly important in the context of global changes
imposing strong selection on wild populations (Palumbi, 2001). The
ability of a population to respond to selection will not only depend on
the quantity of genetic variation for each adaptive phenotypic trait but
also on the strength and direction of genetic correlations among traits
(Lande, 1979; Arnold et al., 2001). The genetic architecture of traits
linked by various genetic processes is summarized by the genetic
variance–covariance matrix, also known as the G-matrix (or G), that
corresponds to a symmetric matrix with additive genetic variance for
the different traits contained in the diagonal of the matrix and the
genetic covariances between traits in its off-diagonal elements (Lande,
1979; Lynch and Walsh, 1998). Depending on the direction of
selection, genetic covariances may facilitate, constrain or even prevent
evolution (Arnold, 1992; Agrawal and Stinchcombe, 2009; Morrissey
et al., 2012; Teplitsky et al., 2014b). As such, G plays a central role in
modern quantitative genetic theory dedicated to the evolution of
phenotypic traits, as it is one of the main elements of the multivariate
breeder’s equation widely used for predicting phenotypic evolution
(Lande, 1979). However, so far, attempts to understand adaptive
responses in wild populations based on such quantitative genetics
estimates have yielded equivocal results (Merilä et al., 2001; Kruuk
et al., 2008; Walsh and Blows, 2009). Among the potential limitations
to this approach is the general assumption that G remains constant
over time and/or space (Turelli, 1988), yet we still have too few

temporal and spatial replicates to properly understand the extent of
variation of G in nature (Arnold et al., 2008; Aguirre et al., 2014).
Using simulation-based approaches, previous studies have shown

that several processes influence the constancy of G. First, genetic drift
is expected to affect all aspects of the structure of G, such as the
quantity of genetic variance for each trait and the genetic correlations
between traits defining the geometry of G (that is, its size, shape and
orientation), especially in small and/or isolated populations (Turelli,
1988; Jones et al., 2003; Griswold et al., 2007). Second, directional and/
or stabilizing selection is expected to trigger nonproportional changes
in the structure of G (Roff, 2000), whereas correlational selection
should progressively modify the orientation of G-matrices until they
are aligned with the adaptive landscape (Jones et al., 2007; Revell,
2007). Third, high migration rates are expected to homogenize all
aspects of G (Guillaume and Whitlock, 2007).
Using controlled laboratory experiments, the effects of these

processes have been confirmed to modify the structure of G (see,
for example, Phillips et al., 2001 for genetic drift and Careau et al.,
2015 for selection). Therefore, wild populations experiencing different
environments, and thus different selective pressures, or having under-
gone different demographic history, can be expected to differ in terms
of G-matrices. At the univariate level, several studies have indeed
shown that additive genetic variance is sometimes variable across
populations (see, for example, Husby et al., 2010; reviewed in
Charmantier and Garant, 2005). However, the rare empirical studies
investigating the spatial stability of the G-matrix in natural populations
have yielded equivocal results: whereas some studies have found
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relatively stable G-matrices among populations (see, for example,
Arnold and Phillips, 1999; Ashman, 2003; Puentes et al., 2016;
reviewed in Arnold et al., 2008; see Garant et al., 2008 for a temporal
stability example in a wild population), others have found that
G-matrices could vary among populations (see, for example, Roff
et al., 2004; Johansson et al., 2011; reviewed in Wood and Brodie,
2015; see Björklund et al., 2013 for a temporal variation example in a
wild population).
Most of these studies used individuals from different populations

subsequently bred under artificial laboratory conditions to estimate
quantitative genetic parameters and thus very few have been con-
ducted directly in wild populations. To our knowledge, Roff et al.
(2004) is the only study that has investigated the variability of G
among populations and where the phenotypes have been measured on
individuals in their natural environments. This scarcity may be
problematic given that there is growing evidence that laboratory
experiments may not be generalizable to wild populations that are
experiencing true natural conditions (Kruuk et al., 2008; Charmantier
et al., 2014; Sniegula et al., 2016). Compared with laboratory
experiments, the drawback of working with wild populations is that
genotype by environment (G×E) interactions can confound tests of
differences in G-matrices when estimated in the wild (Wood and
Brodie, 2015). However, in the wild, the estimated evolutionary
potential is expressed in the environment where the individuals are
selected so that comparing G-matrices in populations differing in their
adaptive optimum offers the opportunity to test whether different
selection pressures trigger differentiation in G-matrices (McGuigan,
2006; Johansson et al., 2011).
Overall, information about the spatial variability of evolutionary

potential in wild populations is still very scarce. Therefore, there is
now a crucial need for empirical studies aiming at understanding
whether the genetic architecture of traits is actually variable in the wild
and at which spatial scale (Steppan et al., 2002; Arnold et al., 2008;
Aguirre et al., 2014). Because of the very demanding nature of
estimating G-matrices in the wild, substituting G by phenotypic
variance–covariance matrices (P), which are much easier to estimate,
is a common practice (see, for example, Berner et al., 2008). However,
this substitution is useful only if P correctly reflects the underlying
genetic architecture, and this may not always be the case (Willis et al.,
1991; Hadfield et al., 2007). Furthermore, although comparison tools
exist, until recently there was no statistical framework available to
compare more than two matrices at the same time and to integrate the
uncertainties around G-matrix estimates that are often large (Aguirre
et al., 2014). This stresses the need for more empirical studies in the
wild aiming at reporting G variability for different kinds of traits and
its consequences on the evolutionary potential of populations.
Here, we assess the extent and the nature of spatial variation in the

G-matrix for a set of morphological and reproductive traits in four
wild populations displaying strong phenotypic differentiation. We use
long-term data collected from four Mediterranean blue tit (Cyanistes
caeruleus) populations ideally suited for quantitative genetic studies
because of the availability of extensive pedigree information and
phenotypic data. More specifically, we estimate G-matrices for four
morphological traits representing body size and shape (tarsus, wing
and beak length as well as body mass) and for three reproductive traits
(laying date, clutch size and incubation period). We focus particularly
on incubation period, as, to our knowledge, the present study is only
the second one to test for genetic variance associated with this trait in
natural populations (Husby et al., 2012).
Our study populations are located in a typical Mediterranean

landscape, in southern France mainland and on the island of Corsica,

composed of patchy mosaics of heterogeneous habitats, with forest
covers either dominated by deciduous oaks (Quercus pubescens) or
evergeen oaks (Quercus ilex). This habitat variation translates into
marked phenotypic differences in morphological and life-history traits
(Blondel et al., 2006; Charmantier et al., 2016). For instance, in the
evergreen habitat, birds lay fewer eggs and up to 1 month later in
spring compared with birds in deciduous forests. Moreover, birds
from the mainland are smaller (ca. 15%) than birds from Corsica
(Charmantier et al., 2016). These differences are likely because of
differences in selective pressures between the different habitats. In this
respect, Porlier et al. (2012a) showed that selection is significantly
different among populations for clutch size and laying date (mainly in
the strength of the linear selection gradients). Charmantier et al.
(2004b) also showed that selection on chick morphology differs
between sites (also see Charmantier et al., 2016 for a thorough review
of evidence for local adaptation). Based on mitochondrial genetic data
and morphological data, Corsican populations have been attributed to
a different subspecies Cyanistes caeruleus ogliastrae, occurring as well in
the Iberian Peninsula, whereas the mainland population belongs to the
subspecies C. caeruleus caeruleus (Kvist et al., 2004). Population genetic
analyses have recently confirmed the limited gene flow between
mainland and Corsica (Porlier et al., 2012b; Szulkin et al., 2016).
Taking advantage of this well-defined ecospatial context, this system

provides an excellent setting to evaluate the effects of contrasted
habitats and population history on the G-matrix and their conse-
quences on population evolutionary potential. First, we seek to
estimate G in each population for the two sets of traits (morphology
and reproduction) using Bayesian multivariate animal models and to
describe precisely the differences observed between populations. To do
so, we use a fourth-order genetic covariance tensor analysis (Hine
et al., 2009), a method that can detect subtle differences in variance–
covariance structure among a set of matrices. Second, we aim to
explore whether the potential differences are explained by the contrast
in habitat and/or by geographic distance (mainland vs island). We
predict that G-matrices may have diverged between mainland
and island because of limited gene flow and different population
histories (that is, neutral processes). We also predict that G-matrices
may differ between evergreen and deciduous habitats because of
divergent selection pressures in these two environments. However,
the existing theoretical framework does not provide any quantitative
predictions regarding the direction and magnitude of these differences.
We also aim to assess whether these differences are dependent on
the suite of traits studied (life history vs morphology). Following
Arnold et al. (2001), we predict stronger divergences between life-
history G-matrices than morphological G-matrices as the former traits
may experience stronger and more variable selective pressures. Finally,
we compare P-matrices among populations for the two sets of
characters to assess what would have been inferred if the data
prevented us from estimating G-matrices.

MATERIALS AND METHODS

Study system
Data were collected in four blue tit populations, with landscapes dominated
either by the deciduous downy oak Q. pubescens (site names starting with D-)
or by the evergreen holm oak Q. ilex (site names starting with E-). One study
site was located in southern France (D-Rouviere), and the other three sites were
located in north-western Corsica (E-Pirio, D-Muro and E-Muro) with 6 to
30 km separating them and distant to the mainland site by 440 km (Figure 1).
All populations were monitored as part of a long-term research programme for
17 to 27 years (see Table 1 for sampling years). Capture and handling of the
birds was conducted under permits provided by the Centre de Recherches sur
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la Biologie des Populations d'Oiseaux (CRBPO) and by the Direction

Départementale des Services Vétérinaires (DDSV).

Phenotypic data
Each year, nest boxes were visited at least once a week during the reproductive

period, where data on laying date (date of first egg laid with 1= 1st March) and

clutch size (number of eggs) were collected. Incubation period was calculated as

the number of days between the laying of the last egg and the hatching date of

the first chick. Thus, what we call incubation period does not correspond to the

physiological incubation time sensu stricto. This period can be longer than the

physiological incubation time (14 days, Vedder, 2012) if the female adds a

waiting time after her last egg is laid (typically in a relatively cold spring); it can

also be shorter if the female begins to incubate before the last egg is laid

(typically in warm springs). In these populations, most females lay only one

clutch per year (0 to 1.5% of females lay second clutches in our populations),

and upon breeding failure replacement clutches are sometimes laid. Second and

replacement clutches were excluded from the data set. Breeding blue tits were

captured in nest boxes during the feeding of their young, banded with a unique

metal ring provided by the CRBPO. Nestlings were also uniquely banded before

fledging. Four different morphological traits were measured on male and

female breeders: body mass, tarsus length (from the intertarsal joint to the most

distal undivided scute on the tarsometarsus), flattened wing length and bill

length (from the anterior end of the nares to the tip of the upper mandible).

Phenotypic differences among the different populations as well as their

locations are presented in Figure 1 and Table 1 (see Charmantier et al., 2016

for a thorough review of phenotypic divergence in this system).

Pedigree construction
Pedigrees were constructed in a similar way for each population. We first

included all ringed individuals and assigned their mother and father based on

observational data (caught in the nest box while feeding the brood). For a

subset of individuals (N= 161), molecular assignation of the biological father

using microsatellite data was performed (Charmantier et al., 2004a), and

observational pedigree data were corrected accordingly. In populations of this

study system, 14 to 25% of nestlings are sired by an extra-pair mate

(Charmantier and Blondel, 2003; Charmantier et al., 2004a), a proportion that

could slightly underestimate but is unlikely to greatly bias our genetic variance

estimates considering the sample sizes involved (Charmantier and Réale, 2005;

Firth et al., 2015). Unknown parents of a given nest were coded using a dummy

identity in the pedigree to preserve sibship information. Pedigrees were pruned

for each data set studied to retain only phenotyped individuals and their

ancestors using the pedantics R-package (Morrissey and Wilson, 2010). Pruned

pedigree information for each population and trait type is presented in Table 1.

Quantitative genetic analyses
G- and P-matrix estimation. G-matrices were estimated in each population by
using multivariate animal models (Lynch and Walsh, 1998; Kruuk, 2004). Two
different G-matrices were constructed for each population: one for each type of
traits (morphological and life-history traits). Random effects included additive
genetic effects (VA) estimated through the inclusion of multi-generational
pedigree data, permanent environmental effects (VPE) accounting for repeated
measurements of the same individual (see Table 1 for details), year effect (VY)
and residual variance (VR). In addition, for morphological traits, we added a
random effect for measurer identity in order to control for any potential
confounding measurer effect (VOBS, the number of measurer varying between
15 and 18 depending on the locality). For morphological models, all parents
caught during the breeding period were included in the analyses, whereas
models for life-history traits were female specific. Several fixed effects (age, sex
and ordinal date) were added to account for potentially confounding effects
(see Supplementary Appendix 1 and Supplementary Table S1 for more details).
Ordinal date was included in order to remove the effect of potential trait
changes within year (for example, seasonal variation of body mass or variation
of wing length due to feather abrasion; Supplementary Appendix 1).

As the main purpose of our study was matrix comparison for several traits,
we attached particular attention to trait standardization as scale differences
between variables may potentially affect our conclusions (Hansen et al., 2011).
Trait standardization is essentially done to remove any effects of differential
measurement scale among traits and to compare traits with different orders of
magnitude. All but one trait analysed were on a ratio scale (such as
measurements and counts, that is, positive real numbers that are multipliable
by real numbers without affecting the relationships among the measurements
and possess a unique and nonarbitrary 0); laying date was on an interval scale
(that is, a variable for which there is no natural 0). Transformations that
preserve relationships among the measurements for variables on a ratio scale
are multiplications by a constant. For variables on an interval scale, addition of
a constant and multiplication by a constant are both permissible transforma-
tions (Houle et al., 2011). We chose to apply mean standardization within each
population for all the phenotypic variables we used (that is, dividing raw trait
values by the population mean) as variance scaling is not suitable when one is
interested in evolutionary potential (Houle, 1992; Hansen and Houle, 2008;
Houle et al., 2011; Hansen et al., 2011). Thus, mean scaling removes the
disproportionate effect of traits with larger means, thereby avoiding multiple
problems of interpretation (Houle et al., 2011; Hansen et al., 2011). Laying date
was the only variable for which mean standardization was not relevant, and
hence we accounted for differences in mean laying date between populations by
subtracting the median laying date of each population from the raw values and
then added 30 days in order to avoid negative values. This removed differences
in variance only due to mean differences between populations while still
allowing comparison with other phenotypic traits having a true natural zero.

The models we used can be described as follow:

Ymorpho ¼ mþ Xbþ Zaaþ Zpepe þ Zyryr þ Zobsobsþ e ð1aÞ

YLHT ¼ mþ Xbþ Zaaþ Zpepe þ Zyryr þ e ð1bÞ
Equation (1a) describes the animal models run on morphological traits with
Ymorpho the vector of mean standardized morphological observations for all
individuals and μ the vector of mean phenotypes. X is the design matrix relating
to fixed effects, and b is the vector of fixed effects to be fitted. Za, Zpe, Zyr and
Zobs are the incidence matrices relating to additive genetic (a), permanent
environment (pe), year (yr) and measurer (obs) random effects, respectively,
and e is the vector of residual error. Equation (1b) describes the life-history
animal models with YLHT the vector of mean standardized life-history traits
observations for all individuals and μ the vector of mean phenotypes. X is the
design matrix relating to fixed effects, and b is the vector of fixed effects to be
fitted. Za, Zpe and Zy are the incidence matrices relating to additive genetic (a),
permanent environment (pe) and year (y) random effects, respectively, and e is
the vector of residual error.

All these analyses were performed in a Bayesian framework using the
MCMCglmm R-package (Hadfield, 2010). As the use of posterior distributions
propagates the errors in all estimates derived from animal models, Bayesian

Figure 1 Blue tit study sites in the Mediterranean region. D-Rouvière
population is located in southern France, and E-Pirio, E-Muro and D-Muro in
north-western Corsica, ∼440 km from D-Rouvière. In Corsica, E-Muro is
separated from D-Muro by ~6 km, and from E-Pirio by ~30 km.
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inference has a clear advantage over the other existing methods (Morrissey
et al., 2014). Posterior distributions were composed of 1000 values for each
parameter. We used 1 200 000 iterations per animal model with sampling every
1000 steps. The 200 000 first iterations were discarded as burn-in. To facilitate

convergence, we used slightly informative priors with V ¼
VP
r 0 0
0 & 0
0 0

Vp

r

2
4

3
5

and nu=n with Vp being the phenotypic variance, r the number of random

factors and n the number of traits. We assessed convergence of the models by

graphically checking the posterior estimates and ensuring that autocorrelation

of all the parameter estimates was lower than 0.05.

G-matrices thus correspond to the variance–covariance matrix associated
with the additive genetic random effect. P-matrices were calculated as the sum
of all the variance–covariance matrices associated with the different random
effects but the observer effect, that is, summing a, pe, yr and e in equations (1a
and 1b),. Heritabilities and the proportion of phenotypic covariances explained
by genetic covariances were estimated by standardizing the G-matrix by the
P-matrix, that is, result of the product P− 1/2·G·P− 1/2.

Matrix description: size and shape. The additive genetic variance associated
with each trait was characterized with IA evolvabilities. IA estimates can be
interpreted as the expected percentage of trait change per generation if it were
submitted to selection as strong as on fitness itself (Hansen and Houle, 2008).
In order to describe accurately every estimated G- and P-matrices, we also
computed a series of descriptors of their size and shape. Total volume (Vtot,
Vtot_G and Vtot_P for G and P, respectively), a measure of the variance contained
in each matrix, was calculated as the sum of the eigenvalues (Equation (2)).
Eccentricity (Ω, ΩG and ΩP for G and P, respectively), a measure of the shape
of the matrix, was calculated as the ratio of the first eigenvalue over the sum of
all eigenvalues (Equation (3), Jones et al., 2003).

V tot ¼
Xn

i¼1
li ð2Þ

O ¼ l1
V tot

ð3Þ

with λi the ith eigenvalues of a given G- or P-matrix, and n the number of
traits. To assess the credible interval of the shape and size metrics, we estimated
these descriptors for each of the 1000 estimates that compose the distribution of
G and P. We then computed the mode of their distribution and the 95%
credible interval calculated as the 95% highest posterior density interval with
the R-package (MCMCglmm; Hadfield, 2010).

Comparing G-matrices among populations. Comparison of G-matrices has
long been a statistical challenge and numerous methods have been applied
(Steppan et al., 2002; Roff et al., 2012; Aguirre et al., 2014). However, most of
these methods were not directly related to evolutionary theory (Hansen and
Houle, 2008; Aguirre et al., 2014). Methods were usually designed to compare
matrices element by element or based on criteria that were hardly interpretable
in terms of change of genetic variance or response to selection (Aguirre et al.,
2014). Here we used the fourth-order genetic covariance tensor method (Hine
et al., 2009), recently highlighted by Aguirre et al. (2014) as it is directly related
to the evolutionary consequences of divergence in G for populations, can detect
subtle differences between variance–covariance matrices and allows to compare
more than two matrices at the same time and to integrate uncertainty in
estimates.

Tensors are geometric objects that describe linear relationships between
scalars, vectors, matrices and other tensors. The order of a tensor reflects the
number of indices required to define its elements (De Lathauwer et al., 2004).
For example, a linear map is represented by a matrix (a two-dimensional array),
and therefore is a second-order tensor. Here, in order to describe the variation
among several additive genetic variances, two indices are required (for example,
the genetic covariance between trait x and y is denoted Gxy). The G-matrix is
thus a second-order tensor. Multilinear algebra extends tensors to higher order
structures that can be used to describe variation in lower order structures such
as matrices. The complete description of the variation among G-matrices
requires to estimate the relationships between the (co)variances amongT
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populations, that is, the (co)variances between genetic (co)variances, for
example, the variances among populations of the covariances between traits x
and y (Gxy) or the covariance of Gxy and Gzw (the covariance between traits z
and w). Such elements are denoted ∑G:xy,zw and require the use of four indices.
Therefore, the variation among G-matrices (that is, second-order tensors) can
be described using a fourth-order genetic covariance tensor (∑) (Hine et al.,
2009).

To simplify ∑, it can be represented as a second-order tensor that
corresponds to a covariance matrix (S) of dimension n(n+1)/2 with n the
number of traits (Basser and Pajevic, 2007). The eigen-analysis of the S-matrix
mirrors the spectral decomposition of ∑ and describes accurately variation
among the different G-matrices using eigenvalues and second-order eigenten-
sors (E). These eigentensors are higher level equivalent of eigenvectors for
matrices and describe independent aspects of variation between the different
G-matrices and their eigenvalues reflect the amount by which an eigentensor
contributes to variation among G-matrices. These independent eigentensors
may be interpreted as biologically relevant axes of differentiation representing
different sources of selective pressures for example (Hine et al., 2009). Large
values in the diagonal elements but small values in the off-diagonal elements of
E would indicate differences among G mainly in the quantity of variance for
individual traits, the relative magnitude of these values indicating the relative
contribution of each trait to these differences. On the other hand, the
magnitude of the off-diagonal elements of E indicates differences in trait
covariances between G-matrices. Practically, each second-order eigentensor can
be decomposed into its eigenvalues and eigenvectors (e) that describe
genetically independent linear combinations of traits that show differences in
genetic variance and covariance. The distribution of the eigenvalues of an
eigentensor indicates the number of independent genetic directions in which
the G-matrices differ (within the space of independent change represented by
the eigentensor). For example, if the first eigenvector of an eigentensor accounts
for most of the variance (its eigenvalue is large compared with the others), the
G-matrices differ likely only in a single combination of traits that corresponds
to the trait loadings on this eigenvector. We strongly encourage the reader to
refer to Hine et al. (2009) for more details on theoretical aspects of the genetic
covariance tensor method.

We applied the fourth-order genetic covariance tensor in a Bayesian
framework following Aguirre et al. (2014). To do so, we simply estimated
the Si matrix for every ith sample (i varied from 1 to 1000) of the set of
posterior distributions for the different G-matrices. We then calculated the
posterior modes S

� �
of the elements of Si and their associated eigentensors. We

then projected every ith sample of G on the different eigentensors to obtain the
distribution of the position of the different G-matrices on each eigentensor. We
encourage the reader to refer to Aguirre et al. (2014) and Careau et al. (2015)
for concrete examples and R scripts to use these methods. In order to test
for differences between G-matrices, we tested whether the credible interval
of their positions along the eigentensors accounting for most of the total
variance overlapped. In order to explore the robustness of these results we used
several confidence intervals (0.95, 0.925 and 0.9). As complementary
approaches, to assess the robustness of our results to different statistical
methods, we also tested these differences using a method based on the
generation of null matrices developed by Aguirre et al. (2014) (see
Supplementary Appendix 2) and a method developed by Ovaskainen et al.
(2008) (see Supplementary Appendix 3).

In order to compare the evolutionary potential of each population, we also
calculated the multivariate average unconditional and conditional evolvabilities
for the different estimated G-matrices following the approach of Hansen and
Houle (2008). Univariate unconditional evolvability is the ability of a trait to
respond to selection. It thus mainly depends on the standing variation available
in the population and corresponds to the expected evolutionary response per
generation in the direction of a linear selection gradient of unit strength
(Hansen and Houle, 2008). The multivariate version of unconditional
evolvability corresponds to the amount of predicted evolutionary response
occurring in the direction of selection. To obtain an overall estimation of the
evolutionary potential associated with the G-matrix, average unconditional
evolvability over random selection gradients can be calculated following Hansen

and Houle (2008):

e ¼ E½l� ð4Þ
where E[λ] denotes the expectation of λ (corresponding to the eigenvalues of
G).

As the average unconditional evolvability e is unaffected by covariances
between traits, we also calculated the average conditional evolvability c. The
conditional evolvability of a trait corresponds to the response of this trait to a
unit directional selection when a set of constraining (that is, covarying) traits is
not allowed to change. When averaged over all directions in the phenotype
space, it provides a global measure of genetic constraints (low constraint for
high value of c). It can be calculated following Hansen and Houle (2008):

cEH½l� þ ð1þ I 1=l½ �
kþ 2

Þ ð5Þ

where H[λ] is the harmonic mean of λ and I[x]≡var[x]/E[x]2 denotes the
mean-standardized variance.

These different quantities and their associated credible intervals were
compared among populations for each type of traits.

Are P-matrices different among populations? In order to know what would
have been inferred if the pedigree data to estimate G-matrices was not available,
we used the covariance tensor analysis on P-matrices (for the two set of
characters) to test whether they differed between populations. The rationale of
this analysis is that finding homogeneous P-matrices across populations is often
interpreted as an indication that G-matrices are probably homogeneous as
well (Arnold et al., 2001). Besides, we also estimated the eigenvalues of
P− 1/2GP− 1/2 for life-history and morphological traits for each population.
A flat distribution of the eigenvalues of P− 1/2GP− 1/2 indicates that all regions
of the phenotypic space are equally heritable and the G- and P- matrices are
proportional, whereas a skew in the distribution of the eigenvalues indicates
that there are regions of phenotypic space that are more heritable than others,
so that P and G are not proportional.

RESULTS

G-matrices among trait types and populations
We found substantial levels of additive genetic variation (posterior
distributions disjunct from 0, see Supplementary Figure S1 for details
on distributions) in all of the 28 trait/population combinations
(Tables 2a and 3). All morphological traits displayed lower levels of
IA evolvabilities (ranging from 0.012 to 0.095; Table 2a) than life-
history traits (ranging from 0.109 to 1.533; Table 3). As a result,
G-matrices for life-history traits displayed substantially higher Vtot

(ranging from 1.457 to 3.242; details in Supplementary Table S2) than
G-matrices for morphological traits (ranging from 0.177 to 0.232;
details in Supplementary Table S2). However, when converted into
heritabilities (that is, divided by phenotypic variance estimates), values
for morphological traits were on average higher than for life-history
ones (Tables 2a and 3). In terms of trait associations, the posterior
modes of genetic covariances between morphological traits were all
positive and presented similar values in each population (Table 2b, see
Supplementary Table S3a for genetic correlation estimates). All genetic
covariances were significant for D-Rouvière and E-Muro, except for
genetic covariances between bill length and the other morphological
traits in E-Muro. For E-Pirio and D-Muro, all genetic covariances
between bill length and the other morphological traits were positive
but only significant with body mass. For life-history traits, the genetic
covariance between laying date and clutch size was negative in all
populations but significant only for D-Muro (Table 3; see
Supplementary Table S3b for genetic correlation estimates). All other
genetic covariances for life-history traits were nonsignificant. In
addition, estimates of the other variance components are provided
in Supplementary Table S4.
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All morphological traits loaded in the same direction on the first
eigenvector of G, with body mass having the strongest statistical weight
(Supplementary Table S5). For morphological G-matrices, eccentricity
(that is, the proportion of variance accounted for by the first
eigenvector of a matrix) ranged from 55.6 to 66.4% (Supplementary
Table S2). For life-history traits, laying date and clutch size had
opposed loadings on the first eigenvector (Supplementary Table S5).
Incubation period had little influence on the first eigenvector. Life-
history G-matrices showed similar eccentricity values to those
obtained for morphological traits (ranging from 55 to 81.1% for
life-history G; Supplementary Table S2). As eccentricity corresponds
to the quantity of variance contained in the main axis of variation over
the total variance contained in the matrix, it provides an indication on
the shape of the G-matrix and is bounded between Vtot/n (sphere
shape) and 1 (line). Our values of eccentricity thus indicated ellipsoid
G-matrices.

Comparisons of G-matrices between populations
In the covariance tensor analyses, the first and second eigentensors
explained 90% of the variance among matrices for life-history traits
and 70% for morphological traits (Supplementary Table S6). Along
the first eigentensors (E1 and E2, respectively, the first and second
eigentensors), the 95% confidence intervals of posterior distributions
of the position of the G-matrices overlapped (Figures 2a and b). As
confidence intervals are usually large with G-matrix estimates, we
computed less stringent confidence intervals (0.925, 0.9) to test
whether our results were robust to less stringent criteria. For
morphological traits, we obtained the same results. For life-history
traits, 90% confidence intervals did not overlap on E1 between E-Pirio
and D-Muro. However, note that their relative positions on the
tensors were very close.
In line with this, evolutionary potential estimates indicated weak

differentiation. The different measures of evolutionary potential
from each G-matrix also largely overlapped between the different
populations apart from conditional evolvability of the morpholo-
gical G-matrix between E-Pirio and D-Rouvière (Figure 3a). This

may indicate that the G-matrices from D-Rouvière and E-Pirio
were very weakly differentiated, a trend perceptible in Figure 2a
(along E2, see also Supplementary Appendix 3 and Supplementary
Figure S2). Moreover, using the method developed by Aguirre
et al. (2014) to test differences with the tensor analysis, we did
not detect any difference between G-matrices for both types of
traits (Supplementary Appendix 2, Supplementary Table S7 and
Supplementary Figure S3a). Therefore, the only slight differences
we found were inconsistent across methods suggesting weak global
pattern. Thus, we found little evidence for differences among
G-matrices whatever the type of trait, the type of habitat or the
geographic position of the population considered (mainland vs
island). Note however that a valid test of an insular effect on the
G-matrix would require at least replicate mainland populations.
Apart from being nonsignificant with 95% confidence intervals, the
differences in the posterior modes of the different metrics
computed represent negligible differences in evolutionary potential.
Indeed, although evolvability values showed that life-history traits
harbour slightly more genetic variance in D-Muro, conditional
evolvability values, a measure that takes the genetic architecture
into account, were similar for the four blue tit populations
(Figure 3).

P-matrix comparison
At the phenotypic level, covariances between morphological traits were
similar in terms of magnitude to the genetic covariances. However, in
contrast with the nonsignificant genetic correlations, tarsus length and
bill length phenotypes covaried significantly at the phenotypic level in
all populations (Table 2b; see Supplementary Table S3a for correlation
estimates). In addition, phenotypic covariances for life-history traits
tended to be significant, especially for covariance involving clutch size
(Table 3 and Supplementary Figure S4; see Supplementary Table S3b
for genetic correlation estimates). For both types of traits, the
distributions of the eigenvalues of P− 1/2·G·P− 1/2 were skewed
indicating nonproportionality between G and P (Figure 4 and
Supplementary Figure S5).

Table 2a Posterior modes of mean standardized traits genetic and phenotypic variances (estimated variance×100, corresponding to IA
evolvabilities for genetic ones) for morphological G- and P-matrices with their 95% credible interval for the four blue tit populations

Wing length Body mass Tarsus length Bill length

D-Rouvière
G 0.018 (0.015; 0.022) 0.095 (0.075; 0.112) 0.040 (0.031; 0.048) 0.075 (0.062; 0.097)

P 0.048 (0.045; 0.054) 0.292 (0.264; 0.317) 0.066 (0.062; 0.072) 0.216 (0.202; 0.235)

P−1/2GP−1/2 0.331 (0.284; 0.399) 0.293 (0.242; 0.359) 0.571 (0.475; 0.648) 0.341 (0.278; 0.414)

E-Pirio
G 0.012 (0.009; 0.018) 0.092 (0.058; 0.119) 0.037 (0.025; 0.052) 0.041 (0.027; 0.06)

P 0.050 (0.047; 0.056) 0.267 (0.25; 0.294) 0.084 (0.076; 0.091) 0.229 (0.207; 0.253)

P−1/2GP−1/2 0.201 (0.142; 0.301) 0.320 (0.201; 0.392) 0.427 (0.294; 0.565) 0.181 (0.111; 0.247)

E-Muro
G 0.019 (0.011; 0.026) 0.079 (0.042; 0.113) 0.05 (0.021; 0.067) 0.047 (0.022; 0.08)

P 0.053 (0.047; 0.066) 0.229 (0.192; 0.265) 0.092 (0.078; 0.108) 0.221 (0.198; 0.279)

P−1/2GP−1/2 0.319 (0.203; 0.431) 0.309 (0.165; 0.432) 0.451 (0.246; 0.644) 0.195 (0.09; 0.319)

D-Muro
G 0.018 (0.012; 0.024) 0.057 (0.027; 0.083) 0.04 (0.03; 0.054) 0.065 (0.035; 0.085)

P 0.058 (0.051; 0.067) 0.240 (0.218; 0.261) 0.082 (0.074; 0.091) 0.242 (0.223; 0.279)

P−1/2GP−1/2 0.274 (0.173; 0.37) 0.221 (0.102; 0.308) 0.509 (0.39; 0.633) 0.211 (0.133; 0.324)

Posterior modes of heritabilities calculated as the diagonal elements of P−1/2GP−1/2 are reported with their 95% credible interval for each trait and population.
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Using the covariance tensor analysis to compare the different
P-matrices among populations, we found that P-matrices differed
significantly among populations for morphological and life-history
traits. For morphological traits, the first covariance tensor (E1), which
accounted for 55.4% of the variance among matrices, described
significant variation between the P-matrices for D-Muro, E-Muro
and D-Rouvière (posterior distributions of their position on E2 did not
overlap, Figure 2c; although confidence intervals slightly overlapped in
additional analyses, see Supplementary Appendix 2, Supplementary
Figure S3 and Supplementary Table S7). For life-history trait
P-matrices, we found that the second covariance tensor (E2), which
accounted for 29.4% of the variance among matrices, described
significant variation between the P-matrices for D-Rouvière and the
three Corsican populations (that is, posterior distributions of their
position on E2 did not overlap, Figure 2d, Supplementary Figure S3
and Supplementary Table S7). Laying date and clutch size had
opposing loadings (respective loadings: 0.750, − 0.604) on the first
eigenvector of the second eigentensor (e21; which explained 55.9 % of
the variation captured by E2, Supplementary Table S6) meaning that
the differences between these matrices lie mainly in the quantity of
variance contained in these two traits.

DISCUSSION

Using detailed pedigrees and multivariate animal models on long-term
phenotypic datasets of blue tits, we estimated G-matrices for mor-
phological and life-history traits in four wild populations. Although
these populations belonged to two different subspecies, experienced
contrasted environments imposing different selection pressures and
exhibited strong phenotypic divergence on many traits (Porlier et al.,
2012b; Charmantier et al., 2016), we found no evidence for differences
among populations in G-matrices for both set of traits. In contrast,
although P-matrices for morphological traits were quite conserved
among populations, P-matrices for life-history traits were different,
thus highlighting that P-matrices can be poor surrogates of
G-matrices.

Genetic architecture of life-history and morphological traits
All studied traits displayed substantial levels of additive genetic
variance in all populations (Tables 2a and 3 and Supplementary
Figure S1). In birds, numerous studies have previously found
significant VA for morphological traits (reviewed in Postma, 2014).
For life-history traits, results from previous studies are more equivocal,
yet clutch size and laying date usually display low but significant
heritable variation (Postma, 2014). In terms of magnitude, morpho-
logical traits show substantially (10 times) lower IA than life-history
traits. Traits closely associated with fitness are predicted to harbour
little genetic variance (Fisher, 1930; Falconer and Mackay, 1996), and
in line with this, life-history traits have been shown to have low
heritability (Kruuk et al., 2000; McCleery et al., 2004; Teplitsky et al.,
2009). However, these results are likely explained by the general use of
variance scaling that leads traits with large phenotypic variance, such
as life-history traits, to present relatively small estimated heritabilities
(Houle, 1992). For this reason, several authors have advocated the use
of mean scaling that better reflects the potential of life-history traits for
rapid evolution (Hansen and Houle, 2008; Hansen et al., 2011).
In contrast to the large literature on clutch size and laying date, our

study is, to our knowledge, only the second one to test for genetic
variance in incubation period in natural populations (Husby et al.,
2012) and the first one to show evidence for additive genetic variation
in incubation period. Note that incubation period measured here is
not the strict physiological duration of egg incubation by the female,T
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but rather the time interval between the last egg laid and hatching.
This interval is a crucial period for insectivorous birds in
temperate forests that need to adjust their breeding phenology
in order to synchronize the late nestling stage with the food peak
period (Dunn, 2004; Visser et al., 2006). Although it is well known
that females can adjust their laying date via individual phenotypic
plasticity (see, for example, Both et al., 2004; Charmantier and
Gienapp, 2014), the fine tuning of breeding phenology can also be
modulated through variation in this incubation period, either by:
(1) a delay of the start of incubation after clutch completion
(Cresswell and Mccleery, 2003; Kluen et al., 2011), (2) a start of
incubation before the last egg is laid leading to asynchronous
hatching (Kontiainen et al., 2010; Vedder, 2012) or (3) an
adjustment of the efficiency of incubation following the comple-
tion of the clutch (Haftorn, 1988; Hadfield et al., 2013). Both
hatching delay and asynchrony have been shown to have
substantial impact on fitness (Kontiainen et al., 2010; Kluen
et al., 2011; Hadfield et al., 2013). Asynchronous hatching
produces generally a size hierarchy in the brood staggering the
food demand over time. In turn, this hierarchy may help sibling
negotiation, reduce rivalry and increase offspring survival (see, for
example, Kontiainen et al., 2010). Thereby, evidence for additive
genetic variation in incubation period implies that this trait could
not only be adjusted through phenotypic plasticity, but also that it
could evolve in the long term if targeted by natural selection. This
is particularly important in the actual context of global environ-
mental changes, as it could further help avian populations to track
the advancing phenology of their food resources because of
warming spring temperatures (Both and Visser, 2005; Visser
et al., 2006; Visser, 2008).
In our blue tit study, genetic covariances between morpholo-

gical traits were all positive and significant as found in numerous
other studies (see, for example, Roff, 1996; Kruuk et al., 2008)
denoting classic positive allometric relationships between mor-
phological traits linked to body size. For life-history traits,
significant negative phenotypic correlations between laying date
and clutch size were found in all populations, but the genetic
covariance between these two traits was significant only in
D-Muro. Larger clutches for earlier laying dates are very common
in birds (see, for example, Winkler and Allen, 1996; Husby et al.,
2010), and this correlation corresponds to a classic tradeoff in life-
history theory (Klomp, 1970). However, whether this correlation
has a strong genetic basis remains unclear as significant genetic
correlations were found in several previous studies on insectivor-
ous passerines (Sheldon et al., 2003; Garant et al., 2008 and in this
study for D-Muro), but not in others (Gienapp et al., 2008; Husby
et al., 2010, and here D-Rouvière, E-Pirio and E-Muro). As
genetic correlations often suffer from large sampling variances
(Falconer and Mackay, 1996; Roff, 1996; Kruuk et al., 2008), it is
difficult to understand the causes of such variability in estimates.
In our case, we found contrasted results across the three
populations with well-detailed pedigree (D-Muro, E-Pirio and
D-Rouvière). Hence, it is unlikely that the nonsignificance of
genetic correlations is due to power limitations. Thus, the reason
why early breeding birds are laying larger clutches could be
because of a plastic response to environmental variation, whereby
females may lay fewer eggs in late spring in order to adjust to the
decreasing food availability (Perrins, 1970; Goodenough et al.,
2009).T
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No difference in G-matrix between populations
Simulation studies have shown that genetic drift or divergent selection
can change G characteristics from one generation to another (see, for
example, Roff, 2000; Jones et al., 2003). It is thus interesting that we
found no significant G-matrix differences between the four blue tits
populations, as they differ in many respects (habitats, phenotypic
distributions and selective pressures; Charmantier et al., 2004b, 2016;

Porlier et al., 2012a). A lack of difference in G between populations
also indicates a lack of evidence for any G×E interactions. Never-
theless, these results are in line with other studies investigating
G-matrix variation among populations highlighting strong similarity
of G-matrices (see, for example, Roff et al., 2004; review in Arnold
et al., 2008). Compelling examples of divergent G-matrices across
populations exist but they generally used particular experimental
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designs with individuals collected in the field and subsequently bred in
the laboratory in contrasting environmental conditions, thus compli-
cating the interpretation for G-matrix evolution (see, for example,
Cano et al., 2004; Doroszuk et al., 2008). Moreover, for many of these
studies, it is difficult to evaluate the robustness of the different tests
because of (1) lack of inclusion or biased estimation of error estimates
(Ovaskainen et al., 2008) and (2) inadequate pedigree structure (for
example, few related individuals; problems already highlighted in the
field; Charmantier and Garant, 2005). Therefore, interestingly,
although it seems relatively easy to modify G by applying artificial
selection (see, for example, Careau et al., 2015), in nature,
G-matrices seem stable, even between populations exposed to strong
habitat differences (Arnold et al., 2008 but see Wood and Brodie,
2015). Several nonmutually exclusive hypotheses may explain this
observation.
First, in nature, conspecific populations are generally not genetically

isolated. Migration between populations can potentially counteract the
diversifying effect of divergent selective pressures and thus tend to
homogenize G-matrices (Guillaume and Whitlock, 2007). In our
system, although significant genetic structure has been revealed within
Corsica (Porlier, et al., 2012b; Szulkin et al., 2016), dispersal between
the three Corsican blue tit populations occurs and might be a powerful
homogenizing force. However, dispersal has a limited role regarding
island/mainland differentiation as these populations have probably
evolved in allopatry and belong to two different mitochondrial lineages
(Kvist et al., 2004).
Second, artificial selection pressures applied in experimental studies

among populations are often strong and designed to be contrasted
(see, for example, Doroszuk et al., 2008). In nature, although spatial
variation of selection seems common, strength variability appears as
the main component of variation in selection across populations,
whereas direction is relatively conserved (Siepielski et al., 2013). This
pattern seems to hold in our study system for laying date and clutch
size (Porlier et al., 2012a). In laboratory experiments, the selection
pressures applied to different treatments might also differ in direction
rather than in strength alone. In this respect, an interesting study by
Bolstad et al. (2015) showed that an extremely conserved allometric
relationship in Drosophila can be modified by applying specific
selective pressures. However, once the selective pressures were
released, the population rapidly recovered the original allometric
slope. They concluded that the allometric slope change generated

deleterious pleiotropic responses because of links with unknown traits.
Thus, it is possible that the reason why we rarely observe changes is
because of strong pleiotropic links with unmeasured traits that prevent
structural changes of G-matrices unless particularly new selective
gradients are applied such as in laboratory experiments (Bolstad et al.,
2015). In nature, if the components of selection influencing the most
G-matrices are not variable across populations, spatial stability may
actually not be surprising. In this respect, Roff and Fairbairn (2012)
showed that correlational selection seems to be responsible for the
eigenstructure of G-matrices. It is possible that this type of selection is
remarkably stable across populations and environments. Unfortu-
nately, very little is known about spatial variation of some components
of selection such as nonlinear (quadratic and correlational) selection
(Siepielski et al., 2013, but see Garant et al., 2007), and hence further
investigations in this sense will be of interest.

Using P-matrices as substitutes for G-matrices
P may differ substantially from G for various reasons (Willis et al.,
1991). However, data sets allowing the estimation of G-matrices in the
wild are still scarce. Therefore, in numerous studies, P is used as a
surrogate of G either for comparative or for predictive purposes (see,
for example, Berner et al., 2008). In this study, we showed that
morphological P-matrices displayed similar patterns compared with
G-matrices. In this respect, they may appear as an adequate measure of
the underlying G-matrices, but this conclusion is antagonized by the
fact that P and G were not proportional for morphological traits
(Figure 4). For life-history traits, the patterns observed for P-matrices
were different from those observed for G-matrices, indicating that
basing our population comparisons on P-matrices could have led to
erroneous conclusions in this case. The more heritable a trait is, the
more similar phenotypic correlations are to genetic ones (Cheverud,
1988; Hadfield et al., 2007). Therefore, using P- instead of G-matrices
is likely to give more reliable results for traits having substantial
heritabilities, such as morphological traits, but not for traits showing
low heritabilities, such as life-history traits (Roff, 1996). However,
based on the general nonproportionality of P- and G-matrices, great
caution should be taken.
An issue that may affect our conclusions is the difference in

statistical power generally observed between G and P estimates.
Phenotypic (co)variances are easier to estimate with small sample
sizes than genetic (co)variances (Cheverud, 1988). This leads genetic
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Figure 4 Distribution of the eigenvalues of P−1/2GP−1/2. Left (a) represents morphological variance–covariance matrices in the D-Rouvière population. Right
(b) represents life-history matrices in the D-Rouvière population. The distributions were similar for the other populations and are displayed in Supplementary
Figure S5.
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estimates to be often more imprecise and have wider confidence
intervals. Therefore, one reason why we observe differences between
P- but not G-matrices could be because of lower statistical power to
estimate G. We are nevertheless confident that our results are robust as
the G-matrices were estimated using a large number of individuals and
good pedigree characteristics that seem sufficient to detect significant
differences (see simulations by Teplitsky et al., 2014a). Moreover, even
if the G-matrices were weakly differentiated in our study system, these
differences are unlikely to result in strong differences in evolutionary
potential as evolvability values were similar among the four popula-
tions (Figure 3). We also used three different statistical methods
commonly used in the literature to compare our results with other
studies. Combining the analysis of P-, G- and E- (that is, the
environmental variance–covariance matrix) matrices with selection
and divergence estimates will definitely help us to better depict the
origin of phenotypic divergence in this system.

CONCLUSIONS

Although the populations studied here differ in many respects, they
have similar evolutionary potential based on estimated G-matrices for
morphological and life-history traits. Future comparative genomic
data analyses performed in these populations will help us understand
the genetic basis of these different characters and whether the same
genes underlie traits in different populations (Santure et al., 2015). As
most estimations of G obtained from wild populations are limited to a
few model species and populations, further studies exploring spatial
variation of G across the whole range of the species will be necessary to
test whether our results can be extrapolated to other populations.
If G-matrices are conserved across the entire species range, it will open
interesting perspectives regarding the predictive power of such
estimations. Our findings finally highlight the value of long-term data
sets in several wild populations of the same species in heterogeneous
environments to better understand the complexity of evolutionary
dynamics across space and time.
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