Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Identification of Quantitative Trait Loci for Cardiac Hypertrophy in Two Different Strains of the Spontaneously Hypertensive Rat
Download PDF
Download PDF
  • Original Article
  • Published: 01 March 2005

Identification of Quantitative Trait Loci for Cardiac Hypertrophy in Two Different Strains of the Spontaneously Hypertensive Rat

  • Hyoe Inomata1,2,
  • Takehiro Watanabe1,2,
  • Yoko Iizuka3,
  • Yi-Qiang Liang1,
  • Tomoji Mashimo4,
  • Toru Nabika5,
  • Katsumi Ikeda6,
  • Kazuyuki Yanai1,
  • Takanari Gotoda3,
  • Yukio Yamori7,
  • Mitsuaki Isobe2 &
  • …
  • Norihiro Kato1 

Hypertension Research volume 28, pages 273–281 (2005)Cite this article

  • 1377 Accesses

  • Metrics details

Abstract

Cardiac hypertrophy and left ventricular hypertrophy are known to be substantially controlled by genetic factors. As an experimental model, we undertook genome-wide screens for cardiac mass in F2 populations bred from the stroke-prone spontaneously hypertensive rats (SHRSP) and normal spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) of a Japanese colony. Two F2 cohorts were independently produced: F2(SHRSP × WKY) (110 male and 110 female rats) and F2(SHRSP × WKY) (151 male rats). The ratio of heart weight to body weight (Hw/Bw) was evaluated at 12 months of age in F2(SHRSP × WKY) after salt-loading for 7 months, and at around 15 weeks of age in F2(SHRSP × WKY) who had been fed a normal rat chow diet. Subsequent to an initial screen with 251 markers in F2(SHRSP × WKY) male progeny, 170 and 161 markers were selected and characterized in F2(SHRSP × WKY) female progeny and F2(SHRSP × WKY) male progeny, respectively. Markers from four chromosomal regions showed suggestive or significant linkage to Hw/Bw. The strongest and the most consistent linkage was found in the vicinity of D3Mgh16 on rat chromosome (RNO) 3 (a maximal log of the odds score reached 4.0 to 6.6 across the F2 populations studied). In the other three regions on RNO6, RNO10 and RNO13, the degree of linkage was more prominent in either males or females. These data provide solid evidence for a “principal” RNO3 quantitative trait loci regulating Hw/Bw in SHRSP and SHR, and also suggest the possible presence of sexual dimorphism in regard to genetic susceptibility for cardiac hypertrophy.

Similar content being viewed by others

Identification of potential biomarkers for hypertension based on transcriptomic analysis in rats

Article 16 April 2025

Proteomic identification of the proteins related to cigarette smoke-induced cardiac hypertrophy in spontaneously hypertensive rats

Article Open access 02 November 2020

Stress fiber strain is zero in normal aortic smooth muscle, elevated in hypertensive stretch, and minimal in wall thickening rats

Article Open access 29 November 2024

Article PDF

References

  1. Arnett DK, de las Fuentes L, Broeckel U : Genes for left ventricular hypertrophy. Curr Hypertens Rep 2004; 6: 36–41.

    Article  PubMed  Google Scholar 

  2. Verhaaren HA, Schieken RM, Mosteller M, Hewitt JK, Eaves LJ, Nance WE : Bivariate genetic analysis of left ventricular mass and weight in pubertal twins (the Medical College of Virginia twin study). Am J Cardiol 1991; 68: 661–668.

    Article  CAS  PubMed  Google Scholar 

  3. Post WS, Larson MG, Myers RH, Galderisi M, Levy D : Heritability of left ventricular mass: the Framingham Heart Study. Hypertension 1997; 30: 1025–1028.

    Article  CAS  PubMed  Google Scholar 

  4. Gardin JM, Henry WL, Savage DD, Ware JH, Burn C, Borer JS : Echocardiographic measurements in normal subjects: evaluation of an adult population without clinically apparent heart disease. J Clin Ultrasound 1979; 7: 439–447.

    Article  CAS  PubMed  Google Scholar 

  5. Chaturvedi N, Athanassopoulos G, McKeigue PM, Marmot MG, Nihoyannopoulos P : Echocardiographic measures of left ventricular structure and their relation with rest and ambulatory blood pressure in blacks and whites in the United Kingdom. J Am Coll Cardiol 1994; 24: 1499–1505.

    Article  CAS  PubMed  Google Scholar 

  6. Tanase H, Yamori Y, Hansen CT, Lovenberg W : Heart size in inbred strains of rats. Part 1. Genetic determination of the development of cardiovascular enlargement in rats. Hypertension 1982; 4: 864–872.

    Article  CAS  PubMed  Google Scholar 

  7. Rapp JP : Genetic analysis of inherited hypertension in the rat. Physiol Rev 2000; 80: 135–172.

    Article  CAS  Google Scholar 

  8. Kato N, Hyne G, Bihoreau MT, Gauguier D, Lathrop GM, Rapp JP : Complete genome searches for quantitative trait loci controlling blood pressure and related traits in four segregating populations derived from Dahl hypertensive rats. Mamm Genome 1999; 10: 259–265.

    Article  CAS  PubMed  Google Scholar 

  9. Innes BA, McLaughlin MG, Kapuscinski MK, Jacob HJ, Harrap SB : Independent genetic susceptibility to cardiac hypertrophy in inherited hypertension. Hypertension 1998; 31: 741–746.

    Article  CAS  PubMed  Google Scholar 

  10. Pravenec M, Gauguier D, Schott JJ, et al: Mapping of quantitative trait loci for blood pressure and cardiac mass in the rat by genome scanning of recombinant inbred strains. J Clin Invest 1995; 96: 1973–1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kato N, Mashimo T, Nabika T, Cui ZH, Ikeda K, Yamori Y : Genome-wide searches for blood pressure quantitative trait loci in the stroke-prone spontaneously hypertensive rat of a Japanese colony. J Hypertens 2003; 21: 295–303.

    Article  CAS  PubMed  Google Scholar 

  12. Clark JS, Jeffs B, Davidson AO, et al: Quantitative trait loci in genetically hypertensive rats. Possible sex specificity. Hypertension 1996; 28: 898–906.

    Article  CAS  PubMed  Google Scholar 

  13. Yagil C, Sapojnikov M, Kreutz R, et al: Salt susceptibility maps to chromosomes 1 and 17 with sex specificity in the Sabra rat model of hypertension. Hypertension 1998; 31: 119–124.

    Article  CAS  PubMed  Google Scholar 

  14. Kato N, Tamada T, Nabika T, et al: Identification of quantitative trait loci for serum cholesterol levels in stroke-prone spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol 2000; 20: 223–229.

    Article  CAS  PubMed  Google Scholar 

  15. Bihoreau MT, Gauguier D, Kato N, et al: A linkage map of the rat genome derived from three F2 crosses. Genome Res 1997; 7: 434–440.

    Article  CAS  PubMed  Google Scholar 

  16. Jacob HJ, Brown DM, Bunker RK, et al: A genetic linkage map of the laboratory rat, Rattus norvegicus. Nat Genet 1995; 9: 63–69.

    Article  CAS  PubMed  Google Scholar 

  17. Kato N, Nabika T, Liang YQ, et al: Isolation of a chromosome 1 region affecting blood pressure and vascular disease traits in the stroke-prone rat model. Hypertension 2003; 42: 1191–1197.

    Article  CAS  PubMed  Google Scholar 

  18. Lander ES, Green P, Abrahamson J, et al: MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1987; 1: 174–181.

    Article  CAS  Google Scholar 

  19. Lander E, Kruglyak L : Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11: 241–247.

    Article  CAS  PubMed  Google Scholar 

  20. Siegel AK, Planert M, Rademacher S, et al: Genetic loci contribute to the progression of vascular and cardiac hypertrophy in salt-sensitive spontaneous hypertension. Arterioscler Thromb Vasc Biol 2003; 23: 1211–1217.

    Article  CAS  PubMed  Google Scholar 

  21. Sebkhi A, Zhao L, Lu L, Haley CS, Nunez DJ, Wilkins MR : Genetic determination of cardiac mass in normotensive rats: results from an F344×WKY cross. Hypertension 1999; 33: 949–953.

    Article  CAS  PubMed  Google Scholar 

  22. Deschepper CF, Masciotra S, Zahabi A, Boutin-Ganache I, Picard S, Reudelhuber TL : Functional alterations of the Nppa promoter are linked to cardiac ventricular hypertrophy in WKY/WKHA rat crosses. Circ Res 2001; 88: 223–228.

    Article  CAS  PubMed  Google Scholar 

  23. Tsujita Y, Iwai N, Tamaki S, Nakamura Y, Nishimura M, Kinoshita M : Genetic mapping of quantitative trait loci influencing left ventricular mass in rats. Am J Physiol Heart Circ Physiol 2000; 279: H2062–H2067.

    Article  CAS  PubMed  Google Scholar 

  24. Kren V, Pravenec M, Lu S, et al: Genetic isolation of a region of chromosome 8 that exerts major effects on blood pressure and cardiac mass in the spontaneously hypertensive rat. J Clin Invest 1997; 99: 577–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hamet P, Kaiser MA, Sun Y, et al: HSP27 locus cosegregates with left ventricular mass independently of blood pressure. Hypertension 1996; 28: 1112–1117.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang L, Summers KM, West MJ : Analysis of linkage of the ACE locus with measures of cardiac hypertrophy in the spontaneously hypertensive rat. Clin Exp Pharmacol Physiol 1996; 23: 597–599.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang L, Summers KM, West MJ : Angiotensin I converting enzyme gene cosegregates with blood pressure and heart weight in F2 progeny derived from spontaneously hypertensive and normotensive Wistar-Kyoto rats. Clin Exp Hypertens 1996; 18: 753–771.

    Article  CAS  PubMed  Google Scholar 

  28. Harris EL, Phelan EL, Thompson CM, Millar JA, Grigor MR : Heart mass and blood pressure have separate genetic determinants in the New Zealand genetically hypertensive (GH) rat. J Hypertens 1995; 13: 397–404.

    Article  CAS  PubMed  Google Scholar 

  29. Katsuya T, Takami S, Higaki J, et al: Gap junction protein locus on chromosome 18 cosegregates with body weight in the spontaneously hypertensive rat. Hypertens Res 1995; 18: 63–67.

    Article  CAS  PubMed  Google Scholar 

  30. Kato N, Kanda T, Sagara M, et al: Proposition of a feasible protocol to evaluate salt sensitivity in a population-based setting. Hypertens Res 2002; 25: 801–809.

    Article  PubMed  Google Scholar 

  31. O'Donnell CJ, Lindpaintner K, Larson MG, et al: Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham Heart Study. Circulation 1998; 97: 1766–1772.

    Article  CAS  PubMed  Google Scholar 

  32. Higaki J, Baba S, Katsuya T, et al: Deletion allele of angiotensin-converting enzyme gene increases risk of essential hypertension in Japanese men: the Suita Study. Circulation 2000; 101: 2060–2065.

    Article  CAS  PubMed  Google Scholar 

  33. Katsuya T, Ishikawa K, Sugimoto K, Rakugi H, Ogihara T : Salt sensitivity of Japanese from the viewpoint of gene polymorphism. Hypertens Res 2003; 26: 521–525.

    Article  PubMed  Google Scholar 

  34. Mashimo T, Nabika T, Matsumoto C, et al: Aging and salt-loading modulate blood pressure QTLs in rats. Am J Hypertens 1999; 12: 1098–1104.

    Article  CAS  PubMed  Google Scholar 

  35. Morgan T : Renin, angiotensin, sodium and organ damage. Hypertens Res 2003; 26: 349–354.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Gene Diagnostics and Therapeutics, Research Institute, International Medical Center of Japan, Tokyo, Japan

    Hyoe Inomata, Takehiro Watanabe, Yi-Qiang Liang, Kazuyuki Yanai & Norihiro Kato

  2. Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan

    Hyoe Inomata, Takehiro Watanabe & Mitsuaki Isobe

  3. Graduate School of Medicine, the University of Tokyo, Tokyo, Japan

    Yoko Iizuka & Takanari Gotoda

  4. Graduate School of Medicine, Kyoto University, Kyoto, Japan

    Tomoji Mashimo

  5. Department of Functional Pathology, School of Medicine, Shimane University, Izumo, Japan

    Toru Nabika

  6. School of Human Environmental Sciences, Mukogawa Women's University, Nishinomiya, Japan

    Katsumi Ikeda

  7. WHO Collaborating Center for Research on Primary Prevention of Cardiovascular Diseases, Kyoto, Japan

    Yukio Yamori

Authors
  1. Hyoe Inomata
    View author publications

    Search author on:PubMed Google Scholar

  2. Takehiro Watanabe
    View author publications

    Search author on:PubMed Google Scholar

  3. Yoko Iizuka
    View author publications

    Search author on:PubMed Google Scholar

  4. Yi-Qiang Liang
    View author publications

    Search author on:PubMed Google Scholar

  5. Tomoji Mashimo
    View author publications

    Search author on:PubMed Google Scholar

  6. Toru Nabika
    View author publications

    Search author on:PubMed Google Scholar

  7. Katsumi Ikeda
    View author publications

    Search author on:PubMed Google Scholar

  8. Kazuyuki Yanai
    View author publications

    Search author on:PubMed Google Scholar

  9. Takanari Gotoda
    View author publications

    Search author on:PubMed Google Scholar

  10. Yukio Yamori
    View author publications

    Search author on:PubMed Google Scholar

  11. Mitsuaki Isobe
    View author publications

    Search author on:PubMed Google Scholar

  12. Norihiro Kato
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Norihiro Kato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inomata, H., Watanabe, T., Iizuka, Y. et al. Identification of Quantitative Trait Loci for Cardiac Hypertrophy in Two Different Strains of the Spontaneously Hypertensive Rat. Hypertens Res 28, 273–281 (2005). https://doi.org/10.1291/hypres.28.273

Download citation

  • Received: 15 December 2004

  • Accepted: 17 January 2005

  • Issue date: 01 March 2005

  • DOI: https://doi.org/10.1291/hypres.28.273

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • genetics
  • inbred strains
  • cardiac mass
  • hypertrophy
  • heart

This article is cited by

  • A trans locus causes a ribosomopathy in hypertrophic hearts that affects mRNA translation in a protein length-dependent fashion

    • Franziska Witte
    • Jorge Ruiz-Orera
    • Sebastiaan van Heesch

    Genome Biology (2021)

  • Novel genes on rat chromosome 10 are linked to body fat mass, preadipocyte number and adipocyte size

    • A Weingarten
    • L Turchetti
    • N Klöting

    International Journal of Obesity (2016)

  • Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function

    • Chris McDermott-Roe
    • Junmei Ye
    • Stuart A. Cook

    Nature (2011)

  • Identification of genetic loci involved in diabetes using a rat model of depression

    • Leah C. Solberg Woods
    • Nasim Ahmadiyeh
    • Eva E. Redei

    Mammalian Genome (2009)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited