Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Caffeic Acid Inhibits Vascular Smooth Muscle Cell Proliferation Induced by Angiotensin II in Stroke-Prone Spontaneously Hypertensive Rats
Download PDF
Download PDF
  • Original Article
  • Published: 01 April 2005

Caffeic Acid Inhibits Vascular Smooth Muscle Cell Proliferation Induced by Angiotensin II in Stroke-Prone Spontaneously Hypertensive Rats

  • Peng-Gao Li1,2,
  • Jin-Wen Xu1,3,
  • Katsumi Ikeda1,3,
  • Akira Kobayakawa4,
  • Yasuyo Kayano4,
  • Takahiko Mitani4,
  • Takao Ikami4 &
  • …
  • Yukio Yamori5 

Hypertension Research volume 28, pages 369–377 (2005)Cite this article

  • 1943 Accesses

  • Metrics details

Abstract

Epidemiological studies have linked the consumption of phenolic acids with reduced risk of cardiovascular diseases. In the present study, we sought to investigate whether caffeic acid, a phenolic acid which is abundant in normal diet, can antagonize angiotensin II (Ang II)-induced vascular smooth muscle cell (VSMC) proliferation in stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto (WKY) rats, and if so, to elucidate the underlying cell signaling mechanisms. We exposed VSMCs to Ang II and caffeic acid and found that caffeic acid significantly inhibited intracellular superoxide anion generation (decreased from 127±6.3% to 100.3±6.6% of the control cells) and the cell proliferation induced by Ang II. Furthermore, caffeic acid significantly abolished the tyrosine phosphorylation of JAK2 (decreased from 7.4 ±0.6-fold to 2.4±0.6-fold at 2 min) and STAT1 (decreased from 1.8±0.2-fold to 0.5±0.1-fold at 2 min) and the phosphorylation of ERK1/2 (decreased from 99.2±10.2-fold to 49.8 ±10.9-fold at 2 min) that were induced by Ang II. These effects of caffeic acid were consistent with the inhibition of the proliferation of VSMCs by DPI, an NADPH oxidase inhibitor, and by AG-490, a JAK2 inhibitor. In conclusion, our findings suggest that caffeic acid attenuates the proliferative reaction of VSMCs to Ang II stimulation in both SHRSP and WKY rats by inhibiting the generation of reactive oxygen species and then partially blocking the JAK/STAT signaling cascade and the Ras/Raf-1/ERK1/2 cascade.

Similar content being viewed by others

Caffeic acid alleviates cerebral ischemic injury in rats by resisting ferroptosis via Nrf2 signaling pathway

Article 13 October 2023

Caffeine promotes angiogenesis through modulating endothelial mitochondrial dynamics

Article 04 March 2021

Elucidation of the effects of caffeine consumption on estrous cycle, hematology, and lipid profile of female Wistar rats

Article Open access 02 October 2025

Article PDF

References

  1. Okamoto K, Kato S, Arima N, Fujii T, Morimatsu M, Imaizumi T : Cyclin-dependent kinase inhibitor, p21Waf1, regulates vascular smooth muscle cell hypertrophy. Hypertens Res 2004; 27: 283–291.

    Article  CAS  Google Scholar 

  2. Daemen MJ, Lombardi DM, Bosman FT, Schwartz SM : Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res 1991; 68: 450–456.

    Article  CAS  Google Scholar 

  3. Bernstein KE, Marrero MB : The importance of tyrosine phosphorylation in angiotensin II signaling. Trends Cardiovasc Med 1996; 6: 179–187.

    Article  CAS  Google Scholar 

  4. Marrero MB, Schieffer B, Li B, Sun J, Harp JB, Ling BN : Role of Janus kinase/signal transducer and activator of transcription and mitogen-activated protein kinase cascades in angiotensin II- and platelet-derived growth factor-induced vascular smooth muscle cell proliferation. J Biol Chem 1997; 272: 24684–24690.

    Article  CAS  Google Scholar 

  5. Duff JL, Marrero MB, Paxton WG, Schieffer B, Bernstein KE, Berk BC : Angiotensin II signal transduction and the mitogen-activated protein kinase pathway. Cardiovasc Res 1995; 30: 511–517.

    Article  CAS  Google Scholar 

  6. Zafari AM, Ushio-Fukai M, Akers M, et al: Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension 1998; 32, 488–495.

    Article  CAS  Google Scholar 

  7. Yao L, Kobori H, Rahman M, et al: Olmesartan improves endothelin-induced hypertension and oxidative stress in rats. Hypertens Res 2004; 27: 493–500.

    Article  CAS  Google Scholar 

  8. Schieffer B, Luchtefeld M, Braun S, Hilfiker A, Hilfiker-Kleiner D, Drexler H : Role of NADPH oxidase in angiotensin II-induced JAK/STAT signaling and cytokine induction. Circ Res 2000; 87: 1195–1201.

    Article  CAS  Google Scholar 

  9. Burdon RH : Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med 1995; 18: 775–794.

    Article  CAS  Google Scholar 

  10. Ushio-Fukai M, Zafari AM, Fukui T, Ishizaka N, Griendling KK : p22 phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II induced hypertrophy in vascular smooth muscle cells. J Biol Chem 1996; 271: 23317–23321.

    Article  CAS  Google Scholar 

  11. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T : Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 1995; 270: 296–299.

    Article  CAS  Google Scholar 

  12. Olthof MR, Peter Hollman CH, Katan MB : Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr 2001; 131: 66–71.

    Article  CAS  Google Scholar 

  13. Azuma K, Ippoushi K, Nakayama M, Ito H, Higashio H, Terao J : Absorption of chlorogenic acid and caffeic acid in rats after oral administration. J Agric Food Chem 2000; 48: 5496–5500.

    Article  CAS  Google Scholar 

  14. Raneva V, Shimasaki H, Ishida Y, Ueta N, Niki E : Antioxidative activity of 3,4-dihydroxyphenylacetic acid and caffeic acid in rat plasma. Lipids 2001; 36: 1111–1116.

    Article  CAS  Google Scholar 

  15. Beyer G, Melzig MF : Effects of selected flavonoids and caffeic acid derivatives on hypoxanthine-xanthine oxidase-induced toxicity in cultivated human cells. Planta Med 2003; 69: 1125–1129.

    Article  CAS  Google Scholar 

  16. Suzuki A, Kagawa D, Ochiai R, Tokimitsu I, Saito I : Green coffee bean extract and its metabolites have a hypotensive effect in spontaneously hypertensive rats. Hypertens Res 2002; 25: 99–107.

    Article  CAS  Google Scholar 

  17. Chamley-Campbell J, Campbell GR, Ross R : The smooth muscle cell in culture. Physiol Rev 1979; 59: 1–61.

    Article  CAS  Google Scholar 

  18. Ying CJ, Xu JW, Ikeda K, Takahashi K, Nara Y, Yamori Y : Tea polyphenols regulate nicotinamide adenine dinucleotide phosphate oxidase subunit expression and ameliorate angiotensin II-induced hyperpermeability in endothelial cells. Hypertens Res 2003; 26: 823–828.

    Article  CAS  Google Scholar 

  19. Suh YA, Arnld RS, Lassegue B, et al: Cell transformation by the superoxide-generating oxidase Mox1. Nature 1999; 401: 79–81.

    Article  CAS  Google Scholar 

  20. Wang HD, Pagano PJ, Du Y, et al: Superoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide. Circ Res 1998; 82: 810–818.

    Article  CAS  Google Scholar 

  21. Force T, Bonventre JV : Growth factors and mitogen activated protein kinases. Hypertension 1998; 31: 152–161.

    Article  CAS  Google Scholar 

  22. Liao DF, Jin ZG, Baas AS, et al: Purification and identification of secreted oxidative stress-induced factors from vascular smooth muscle cells. J Biol Chem 2000; 275: 189–196.

    Article  CAS  Google Scholar 

  23. Xu JW, Ikeda K, Kobayakawa A, et al: Downregulation of Rac1 activation by caffeic acid in aortic smooth muscle cells. Life Sci 2005; 76: 2861–2872.

    Article  CAS  Google Scholar 

  24. Griendling KK, Alexander RW : Oxidative stress and cardiovascular disease. Circulation 1997; 96, 3264–3265.

    CAS  PubMed  Google Scholar 

  25. Patterson C, Ruef J, Madamanchi NR, et al: Stimulation of a vascular smooth muscle cell NADPH oxidase by thrombin. Evidence that p47(phox) may participate in forming this oxidase in vitro and in vivo. J Biol Chem 1999; 274: 19814–19822.

    Article  CAS  Google Scholar 

  26. Weber H, Taylor DS, Molloy CJ : Angiotensin II induces delayed mitogenesis and cellular proliferation in rat aortic smooth muscle cells. Correlation with the expression of specific endogenous growth factors and reversal by suramin. J Clin Invest 1994; 93: 788–798.

    Article  CAS  Google Scholar 

  27. Bech-Laursen J, Rajagopalan S, Galis Z, Tarpey M, Freeman BA, Harrison DG : Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 1997; 95: 588–593.

    Article  Google Scholar 

  28. Fukui T, Ishizaka N, Rajagopalan S, et al: p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ Res 1997; 80: 45–51.

    Article  CAS  Google Scholar 

  29. Griendling KK, Ollerenshaw JD, Minieri CA, Alexander RW : Angiotensin II stimulates NADH and NADPH activity in cultured vascular smooth muscle cells. Circ Res 1994; 74: 1141–1148.

    Article  CAS  Google Scholar 

  30. Rajagopalan S, Kurz S, Munzel T, et al: Angiotensin II mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations of vasomotor tone. J Clin Invest 1996; 97: 1916–1923.

    Article  CAS  Google Scholar 

  31. Ushio-Fukai M, Alexander RW, Akers M, et al: Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 1999; 274: 22699–22704.

    Article  CAS  Google Scholar 

  32. Finkel T : Oxygen radicals and signaling. Curr Opin Cell Biol 1998; 10: 248–253.

    Article  CAS  Google Scholar 

  33. Irani K, Goldschmidt-Clemont PJ : Ras, superoxide and signal transduction. Biochem Pharmacol 1998; 55: 1339–1346.

    Article  CAS  Google Scholar 

  34. Lee SL, Wang WW, Finlay GA, Fanburg BL : Serotonin stimulates mitogen activated protein kinase activity through the formation of superoxide anion. Am J Physiol 1999; 277: L282–L291.

    CAS  PubMed  Google Scholar 

  35. Madamanchi NR, Li S, Patterson C, Runge MS : Thrombin regulates vascular smooth muscle cell growth and heat shock proteins via the JAK-STAT pathway. J Biol Chem 2001; 276: 18915–18924.

    Article  CAS  Google Scholar 

  36. Benjamin IJ, McMillan DR : Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res 1998; 83: 117–132.

    Article  CAS  Google Scholar 

  37. Nishizawa J, Nakai A, Matsuda K, Komeda M, Ban T, Nagata K : Reactive oxygen species play an important role in the activation of heat shock factor 1 in ischemic-reperfused heart. Circulation 1999; 99: 934–941.

    Article  CAS  Google Scholar 

  38. Stephanou A, Isenberg DA, Nakajima K, Latchman DS : Signal transducer and activator of transcription-1 and heat shock factor-1 interact and activate the transcription of the Hsp-70 and Hsp-90beta gene promoters. J Biol Chem 1999; 274: 1723–1728.

    Article  CAS  Google Scholar 

  39. Lee MC, Shoji H, Miyazaki H, et al: Assessment of oxidative stress in the spontaneously hypertensive rat brain using electron spin resonance (ESR) imaging and in vivo L-band ESR. Hypertens Res 2004; 27: 485–492.

    Article  CAS  Google Scholar 

  40. Paquet JL, Baudouin-Legros M, Marche P, Meyer P : Enhanced proliferating activity of cultured smooth muscle cells from SHR. Am J Hypertens 1989; 2: 108–110.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Frontier Health Science, School of Human Environmental Sciences, Mukogawa Women's University, Nishinomiya, Japan

    Peng-Gao Li, Jin-Wen Xu & Katsumi Ikeda

  2. Department of Nutrition and Food Hygiene, Capital University of Medical Sciences, Beijing, P.R. China

    Peng-Gao Li

  3. Research Center for Life-Style Related Diseases, Mukogawa Women's University, Nishinomiya, Japan

    Jin-Wen Xu & Katsumi Ikeda

  4. Research and Development Institute, MIKI Corporation, Nishinomiya, Japan

    Akira Kobayakawa, Yasuyo Kayano, Takahiko Mitani & Takao Ikami

  5. International Center for Research on Primary Prevention of Cardiovascular Diseases, Kyoto, Japan

    Yukio Yamori

Authors
  1. Peng-Gao Li
    View author publications

    Search author on:PubMed Google Scholar

  2. Jin-Wen Xu
    View author publications

    Search author on:PubMed Google Scholar

  3. Katsumi Ikeda
    View author publications

    Search author on:PubMed Google Scholar

  4. Akira Kobayakawa
    View author publications

    Search author on:PubMed Google Scholar

  5. Yasuyo Kayano
    View author publications

    Search author on:PubMed Google Scholar

  6. Takahiko Mitani
    View author publications

    Search author on:PubMed Google Scholar

  7. Takao Ikami
    View author publications

    Search author on:PubMed Google Scholar

  8. Yukio Yamori
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Katsumi Ikeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, PG., Xu, JW., Ikeda, K. et al. Caffeic Acid Inhibits Vascular Smooth Muscle Cell Proliferation Induced by Angiotensin II in Stroke-Prone Spontaneously Hypertensive Rats. Hypertens Res 28, 369–377 (2005). https://doi.org/10.1291/hypres.28.369

Download citation

  • Received: 18 October 2004

  • Accepted: 08 February 2005

  • Issue date: 01 April 2005

  • DOI: https://doi.org/10.1291/hypres.28.369

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • caffeic acid
  • angiotensin II
  • vascular smooth muscle cells
  • proliferation
  • stroke-prone spontaneously hypertensive rats

This article is cited by

  • Coffee consumption and risk of hypertension: a dose–response meta-analysis of prospective studies

    • Lanfranco D’Elia
    • Ersilia La Fata
    • Pasquale Strazzullo

    European Journal of Nutrition (2019)

  • Characterization of phenolics in different parts of selected Capparis species harvested in low and high rainfall season

    • Tehseen Gull
    • Bushra Sultana
    • Muhammad Sher

    Journal of Food Measurement and Characterization (2018)

  • Coffee consumption and risk of hypertension in the Polish arm of the HAPIEE cohort study

    • G Grosso
    • U Stepaniak
    • A Pajak

    European Journal of Clinical Nutrition (2016)

  • Inhibitory effects of 2,3,4′,5-tetrahydroxystilbene-2-O-β-D-glucoside on angiotensin II-induced proliferation of vascular smooth muscle cells

    • Xiao-le Xu
    • Yan-juan Huang
    • Wei Zhang

    Chinese Journal of Integrative Medicine (2015)

  • Antioxidant activity of caffeoyl-prolyl-histidine amide and its effects on PDGF-induced proliferation of vascular smooth muscle cells

    • Seon-Yeong Kwak
    • Hyun Jung Lee
    • Yoon-Sik Lee

    Amino Acids (2014)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited