Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Augmentation of Intrarenal Angiotensin II Levels in Uninephrectomized Aldosterone/Salt-Treated Hypertensive Rats; Renoprotective Effects of an Ultrahigh Dose of Olmesartan
Download PDF
Download PDF
  • Original Article
  • Published: 01 March 2006

Augmentation of Intrarenal Angiotensin II Levels in Uninephrectomized Aldosterone/Salt-Treated Hypertensive Rats; Renoprotective Effects of an Ultrahigh Dose of Olmesartan

  • Yu-Yan Fan1,
  • Ryoko Baba2,
  • Yukiko Nagai3,
  • Akira Miyatake3,
  • Naohisa Hosomi4,
  • Shoji Kimura1,
  • Guang-Ping Sun4,
  • Masakazu Kohno4,
  • Mamoru Fujita2,
  • Youichi Abe1 &
  • …
  • Akira Nishiyama1 

Hypertension Research volume 29, pages 169–178 (2006)Cite this article

  • 1213 Accesses

  • Metrics details

Abstract

Recent studies have suggested that aldosterone plays a role in the pathogenesis of renal injury. In this study, we investigated whether local angiotensin II (Ang II) activity contributes to the progression of renal injury in aldosterone/salt-induced hypertensive rats. Uninephrectomized rats were treated with 1% NaCl in a drinking solution and one of the following combinations for 6 weeks: vehicle (2% ethanol, s.c.; n=9), aldosterone (0.75 μg/h, s.c.; n=8), aldosterone+Ang II type 1 receptor blocker olmesartan (10 mg/kg/day, p.o.; n=8), or aldosterone+olmesartan (100 mg/kg/day, p.o.; n=9). Aldosterone/salt-treated hypertensive rats exhibited severe proteinuria and renal injury characterized by glomerular sclerosis and tubulointerstitial fibrosis. Aldosterone/salt-induced renal injury was associated with augmented expression of angiotensin converting enzyme and Ang II levels in the renal cortex and medullary tissues. Renal cortical and medullary mRNA expression of transforming growth factor-β (TGF-β) and connective tissue growth factor (CTGF) as well as the collagen contents were increased in aldosterone/salt-treated hypertensive rats. Treatment with olmesartan (10 or 100 mg/kg/day) had no effect on blood pressure but attenuated proteinuria in a dose-dependent manner. Olmesartan at 10 mg/kg/day tended to decrease renal cortical and medullary Ang II levels, TGF-β and CTGF expression, and collagen contents; however, these changes were not significant. On the other hand, an ultrahigh dose of olmesartan (100 mg/kg/day) significantly decreased these values and ameliorated renal injury. These data suggest that augmented local Ang II activity contributes, at least partially, to the progression of aldosterone/salt-dependent renal injury.

Similar content being viewed by others

High salt intake exacerbates aldosterone-related target organ damage in patients with primary aldosteronism

Article 08 July 2025

Angiotensin II type 2 receptor activation preserves megalin in the kidney and prevents proteinuria in high salt diet fed rats

Article Open access 15 March 2023

Characterization of pendrin in urinary extracellular vesicles in a rat model of aldosterone excess and in human primary aldosteronism

Article Open access 29 July 2021

Article PDF

References

  1. Takeda Y : Pleiotropic actions of aldosterone and the effects of eplerenone, a selective mineralocorticoid receptor antagonist. Hypertens Res 2004; 27: 781–789.

    Article  CAS  PubMed  Google Scholar 

  2. Hollenberg NK : Aldosterone in the development and progression of renal injury. Kidney Int 2004; 66: 1–9.

    Article  CAS  PubMed  Google Scholar 

  3. Sato A, Saruta T : Aldosterone-induced organ damage: plasma aldosterone level and inappropriate salt status. Hypertens Res 2004; 27: 303–310.

    Article  CAS  PubMed  Google Scholar 

  4. Nishiyama A, Yao L, Nagai Y, et al: Possible contributions of reactive oxygen species and mitogen-activated protein kinase to renal injury in aldosterone/salt-induced hypertensive rats. Hypertension 2004; 43: 841–848.

    Article  CAS  PubMed  Google Scholar 

  5. Blasi ER, Rocha R, Rudolph AE, Blomme EA, Polly ML, McMahon EG : Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int 2003; 63: 1791–1800.

    Article  CAS  PubMed  Google Scholar 

  6. Rocha R, Chander PN, Khanna K, Zuckerman A, Stier CT Jr : Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats. Hypertension 1998; 31: 451–458.

    Article  CAS  PubMed  Google Scholar 

  7. Feria I, Pichardo I, Juarez P, et al: Therapeutic benefit of spironolactone in experimental chronic cyclosporine A nephrotoxicity. Kidney Int 2003; 63: 43–52.

    Article  CAS  PubMed  Google Scholar 

  8. Brown NJ, Nakamura S, Ma L, et al: Aldosterone modulates plasminogen activator inhibitor-1 and glomerulosclerosis in vivo. Kidney Int 2000; 58: 1219–1227.

    Article  CAS  PubMed  Google Scholar 

  9. Chrysostomou A, Becker G : Spironolactone in addition to ACE inhibition to reduce proteinuria in patients with chronic renal disease. N Engl J Med 2001; 345: 925–926.

    Article  CAS  PubMed  Google Scholar 

  10. Sato A, Hayashi K, Naruse M, Saruta T : Effectiveness of aldosterone blockade in patients with diabetic nephropathy. Hypertension 2003; 41: 64–68.

    Article  CAS  PubMed  Google Scholar 

  11. Asai M, Monkawa T, Marumo T, et al: Spironolactone in combination with cilazapril ameliorates proteinuria and renal interstitial fibrosis in rats with anti–Thy-1 irreversible nephritis. Hypertens Res 2004; 27: 971–978.

    Article  CAS  PubMed  Google Scholar 

  12. Rachmani R, Slavachevsky I, Amit M, et al: The effect of spironolactone, cilazapril and their combination on albuminuria in patients with hypertension and diabetic nephropathy is independent of blood pressure reduction: a randomized controlled study. Diabet Med 2004; 21: 471–475.

    Article  CAS  PubMed  Google Scholar 

  13. Williams GH, Burgess E, Kolloch RE, et al: Efficacy of eplerenone versus enalapril as monotherapy in systemic hypertension. Am J Cardiol 2004; 93: 990–996.

    Article  CAS  PubMed  Google Scholar 

  14. Rocha R, Stier CT Jr, Kifor I, et al: Aldosterone: a mediator of myocardial necrosis and renal arteriopathy. Endocrinology 2000; 141: 3871–3878.

    Article  CAS  PubMed  Google Scholar 

  15. Fiebeler A, Nussberger J, Shagdarsuren E, et al: Aldosterone synthase inhibitor ameliorates angiotensin II–induced organ damage. Circulation 2005; 111: 3087–3094.

    Article  CAS  PubMed  Google Scholar 

  16. Hao L, Kanno Y, Fukushima R, Watanabe Y, Ishida Y, Suzuki H : Effects of eplerenone on heart and kidney in two-kidney, one-clip rats. Am J Nephrol 2004; 24: 54–60.

    Article  CAS  PubMed  Google Scholar 

  17. Greene EL, Kren S, Hostetter TH : Role of aldosterone in the remnant kidney model in the rat. J Clin Invest 1996; 98: 1063–1068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rocha R, Chander PN, Zuckerman A, Stier CT Jr : Role of aldosterone in renal vascular injury in stroke-prone hypertensive rats. Hypertension 1999; 33: 232–237.

    Article  CAS  PubMed  Google Scholar 

  19. Sun Y, Ramires FJ, Weber KT : Fibrosis of atria and great vessels in response to angiotensin II or aldosterone infusion. Cardiovasc Res 1997; 35: 138–147.

    Article  CAS  PubMed  Google Scholar 

  20. Robert V, Heymes C, Silvestre JS, Sabri A, Swynghedauw B, Delcayre C : Angiotensin AT1 receptor subtype as a cardiac target of aldosterone: role in aldosterone-salt–induced fibrosis. Hypertension 1999; 33: 981–986.

    Article  CAS  PubMed  Google Scholar 

  21. Sugiyama T, Yoshimoto T, Tsuchiya K, et al: Aldosterone induces angiotensin converting enzyme gene expression via a JAK2-dependent pathway in rat endothelial cells. Endocrinology 2005; 146: 3900–3906.

    Article  CAS  PubMed  Google Scholar 

  22. Harada E, Yoshimura M, Yasue H, et al: Aldosterone induces angiotensin-converting–enzyme gene expression in cultured neonatal rat cardiocytes. Circulation 2001; 104: 137–139.

    Article  CAS  PubMed  Google Scholar 

  23. Xiao F, Puddefoot JR, Barker S, Vinson GP : Mechanism for aldosterone potentiation of angiotensin II–stimulated rat arterial smooth muscle cell proliferation. Hypertension 2004; 44: 340–345.

    Article  CAS  PubMed  Google Scholar 

  24. Keidar S, Gamliel-Lazarovich A, Kaplan M, et al: Mineralocorticoid receptor blocker increases angiotensin-converting enzyme 2 activity in congestive heart failure patients. Circ Res 2005; 97: 946–953.

    Article  CAS  PubMed  Google Scholar 

  25. Sun Y, Zhang J, Zhang JQ, Ramires FJ : Local angiotensin II and transforming growth factor-beta1 in renal fibrosis of rats. Hypertension 2000; 35: 1078–1084.

    Article  CAS  PubMed  Google Scholar 

  26. Klar J, Vitzthum H, Kurtz A : Aldosterone enhances renin gene expression in juxtaglomerular cells. Am J Physiol Renal Physiol 2004; 286: F349–F355.

    Article  CAS  PubMed  Google Scholar 

  27. Rossing K, Schjoedt KJ, Jensen BR, Boomsma F, Parving HH : Enhanced renoprotective effects of ultrahigh doses of irbesartan in patients with type 2 diabetes and microalbuminuria. Kidney Int 2005; 68: 1190–1198.

    Article  CAS  PubMed  Google Scholar 

  28. Miyata T, van Ypersele de Strihou C, Ueda Y, et al: Angiotensin II receptor antagonists and angiotensin-converting enzyme inhibitors lower in vitro the formation of advanced glycation end products: biochemical mechanisms. J Am Soc Nephrol 2002; 13: 2478–2487.

    Article  CAS  PubMed  Google Scholar 

  29. Fujihara CK, Velho M, Malheiros DM, Zatz R : An extremely high dose of losartan affords superior renoprotection in the remnant model. Kidney Int 2005; 67: 1913–1924.

    Article  CAS  PubMed  Google Scholar 

  30. Schmieder RE, Klingbeil AU, Fleischmann EH, Veelken R, Delles C : Additional antiproteinuric effect of ultrahigh dose candesartan: a double-blind, randomized, prospective study. J Am Soc Nephrol 2005; 16: 3038–3045.

    Article  CAS  PubMed  Google Scholar 

  31. Koike H, Konse T, Sada T, et al: Olmesartan medoxomil, a novel potent angiotensin II blocker. Annu Rep Sankyo Res Lab 2003; 55: 1–91.

    CAS  Google Scholar 

  32. Jia N, Okamoto H, Shimizu T, et al: A newly developed angiotensin II type 1 receptor antagonist, CS866, promotes regression of cardiac hypertrophy by reducing integrin beta1 expression. Hypertens Res 2003; 26: 737–742.

    Article  CAS  PubMed  Google Scholar 

  33. Nagai Y, Yao L, Kobori H, et al: Temporary angiotensin II blockade at the prediabetic stage attenuates the development of renal injury in type 2 diabetic rats. J Am Soc Nephrol 2005; 16: 703–711.

    Article  CAS  PubMed  Google Scholar 

  34. Yao L, Kobori H, Rahman M, et al: Olmesartan improves endothelin-induced hypertension and oxidative stress in rats. Hypertens Res 2004; 27: 493–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nishiyama A, Yoshizumi M, Rahman M, et al: Effects of AT1 receptor blockade on renal injury and mitogen-activated protein activity in Dahl salt-sensitive rats. Kidney Int 2004; 65: 972–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fujii T, Takaoka M, Tsuruoka N, Kiso Y, Tanaka T, Matsumura Y : Dietary supplementation of L-carnosine prevents ischemia/reperfusion-induced renal injury in rats. Biol Pharm Bull 2005; 28: 361–363.

    Article  CAS  PubMed  Google Scholar 

  37. Sorooshian M, Olson JL, Meyer TW : Effect of angiotensin II blockade on renal injury in mineralocorticoid-salt hypertension. Hypertension 2000; 36: 569–574.

    Article  CAS  PubMed  Google Scholar 

  38. Iglarz M, Touyz RM, Viel EC, Amiri F, Schiffrin EL : Involvement of oxidative stress in the profibrotic action of aldosterone. Interaction wtih the renin-angiotension system. Am J Hypertens 2004; 17: 597–603.

    CAS  PubMed  Google Scholar 

  39. Takeda Y : Genetic alterations in patients with primary aldosteronism. Hypertens Res 2001; 24: 469–474.

    Article  CAS  PubMed  Google Scholar 

  40. Takakuwa H, Shimizu K, Izumiya Y, et al: Dietary sodium restriction restores nocturnal reduction of blood pressure in patients with primary aldosteronism. Hypertens Res 2002; 25: 737–742.

    Article  CAS  PubMed  Google Scholar 

  41. Saito K, Ishizaka N, Aizawa T, et al: Role of aberrant iron homeostasis in the upregulation of transforming growth factor-β1 in the kidney of angiotensin II–induced hypertensive rats. Hypertens Res 2004; 27: 599–607.

    Article  CAS  PubMed  Google Scholar 

  42. Groholm T, Finckenberg P, Palojoki E, et al: Cardioprotective effects of vasopeptidase inhibition vs. angiotensin type 1−receptor blockade in spontaneously hypertensive rats on a high salt diet. Hypertens Res 2004; 27: 609–618.

    Article  PubMed  Google Scholar 

  43. Kobori H, Ozawa Y, Suzaki Y, Nishiyama A : Enhanced intrarenal angiotensinogen contributes to early renal injury in spontaneously hypertensive rats. J Am Soc Nephrol 2005; 16: 2073–2080.

    Article  CAS  PubMed  Google Scholar 

  44. Navar LG, Nishiyama A : Why are angiotensin concentrations so high in the kidney? Curr Opin Nephrol Hypertens 2004; 13: 107–115.

    Article  CAS  PubMed  Google Scholar 

  45. Morrissey JJ, Klahr S : Effect of AT2 receptor blockade on the pathogenesis of renal fibrosis. Am J Physiol 1999; 276: F39–F45.

    CAS  PubMed  Google Scholar 

  46. Goto M, Mukoyama M, Sugawara A, et al: Expression and role of angiotensin II type 2 receptor in the kidney and mesangial cells of spontaneously hypertensive rats. Hypertens Res 2002; 25: 125–133.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan

    Yu-Yan Fan, Shoji Kimura, Youichi Abe & Akira Nishiyama

  2. Graduate School of Health and Nutrition Sciences, Nakamura Gakuen University, Fukuoka, Japan

    Ryoko Baba & Mamoru Fujita

  3. Life Science Research Center, Kagawa University Medical School, Kagawa, Japan

    Yukiko Nagai & Akira Miyatake

  4. Department of Cardiorenal and Cerebrovascular Medicine, Kagawa University Medical School, Kagawa, Japan

    Naohisa Hosomi, Guang-Ping Sun & Masakazu Kohno

Authors
  1. Yu-Yan Fan
    View author publications

    Search author on:PubMed Google Scholar

  2. Ryoko Baba
    View author publications

    Search author on:PubMed Google Scholar

  3. Yukiko Nagai
    View author publications

    Search author on:PubMed Google Scholar

  4. Akira Miyatake
    View author publications

    Search author on:PubMed Google Scholar

  5. Naohisa Hosomi
    View author publications

    Search author on:PubMed Google Scholar

  6. Shoji Kimura
    View author publications

    Search author on:PubMed Google Scholar

  7. Guang-Ping Sun
    View author publications

    Search author on:PubMed Google Scholar

  8. Masakazu Kohno
    View author publications

    Search author on:PubMed Google Scholar

  9. Mamoru Fujita
    View author publications

    Search author on:PubMed Google Scholar

  10. Youichi Abe
    View author publications

    Search author on:PubMed Google Scholar

  11. Akira Nishiyama
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Akira Nishiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, YY., Baba, R., Nagai, Y. et al. Augmentation of Intrarenal Angiotensin II Levels in Uninephrectomized Aldosterone/Salt-Treated Hypertensive Rats; Renoprotective Effects of an Ultrahigh Dose of Olmesartan. Hypertens Res 29, 169–178 (2006). https://doi.org/10.1291/hypres.29.169

Download citation

  • Received: 31 October 2005

  • Accepted: 14 December 2005

  • Issue date: 01 March 2006

  • DOI: https://doi.org/10.1291/hypres.29.169

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • angiotensin II (Ang II)
  • aldosterone
  • kidney
  • olmesartan
  • rats
Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited