Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
cAMP-Response Element-Binding Protein Mediates Tumor Necrosis Factor-α-Induced Vascular Cell Adhesion Molecule-1 Expression in Endothelial Cells
Download PDF
Download PDF
  • Original Article
  • Published: 01 January 2006

cAMP-Response Element-Binding Protein Mediates Tumor Necrosis Factor-α-Induced Vascular Cell Adhesion Molecule-1 Expression in Endothelial Cells

  • Hiroki Ono1,
  • Toshihiro Ichiki1,
  • Hideki Ohtsubo1,
  • Kae Fukuyama1,
  • Ikuyo Imayama1,
  • Naoko Iino1,
  • Satoko Masuda1,
  • Yasuko Hashiguchi1,
  • Akira Takeshita1 &
  • …
  • Kenji Sunagawa1 

Hypertension Research volume 29, pages 39–47 (2006)Cite this article

  • 1385 Accesses

  • Metrics details

Abstract

Hypertension causes endothelial dysfunction, which plays an important role in atherogenesis. The vascular cell adhesion molecule-1 (VCAM-1) contributes to atherosclerotic lesion formation by recruiting leukocytes from blood into tissues. Tumor necrosis factor-α (TNFα) induces endothelial dysfunction and VCAM-1 expression in endothelial cells (ECs). We examined whether the cAMP-response element binding protein (CREB), a transcription factor that mediates cytokine expression and vascular remodeling, is involved in TNFα-induced VCAM-1 expression. TNFα induced phosphorylation of CREB with a peak at 15 min of stimulation in a dose-dependent manner in bovine aortic ECs. Pharmacological inhibition of p38 mitogen-activated protein kinase (p38-MAPK) inhibited TNFα-induced CREB phosphorylation. Adenovirus-mediated overexpression of a dominant-negative form of CREB suppressed TNFα-induced VCAM-1 and c-fos expression. Although activating protein 1 DNA binding activity was attenuated by overexpression of dominant negative CREB, nuclear factor-κB activity was not affected. Our results suggest that the p38-MAPK/CREB pathway plays a critical role in TNFα-induced VCAM-1 expression in vascular endothelial cells. The p38-MAPK/CREB pathway may be a novel therapeutic target for the treatment of atherosclerosis.

Similar content being viewed by others

Conserved regulatory logic at accessible and inaccessible chromatin during the acute inflammatory response in mammals

Article Open access 25 January 2021

Cellular senescence promotes endothelial activation through epigenetic alteration, and consequently accelerates atherosclerosis

Article Open access 16 July 2021

Aberrant mitochondrial DNA synthesis in macrophages exacerbates inflammation and atherosclerosis

Article Open access 26 August 2024

Article PDF

References

  1. Ross R : The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801–809.

    Article  CAS  Google Scholar 

  2. Blann AD, Tse W, Maxwell SJ, Waite MA : Increased levels of the soluble adhesion molecule E-selectin in essential hypertension. J Hypertens 1994; 12: 925–928.

    Article  CAS  Google Scholar 

  3. DeSouza CA, Dengel DR, Macko RF, Cox K, Seals DR : Elevated levels of circulating cell adhesion molecules in uncomplicated essential hypertension. Am J Hypertens 1997; 10: 1335–1341.

    Article  CAS  Google Scholar 

  4. Parissis JT, Venetsanou KF, Mentzikof DG, et al: Plasma levels of soluble cellular adhesion molecules in patients with arterial hypertension. Correlations with plasma endothelin-1. Eur J Intern Med 2001; 12: 350–356.

    Article  Google Scholar 

  5. Kohara K, Tabara Y, Yamamoto Y, Igase M, Nakura J, Miki T : Genotype-specific association between circulating soluble cellular adhesion molecules and carotid intima-media thickness in community residents: J-SHIPP study. Shimanami Health Promoting Program. Hypertens Res 2002; 25: 31–39.

    Article  CAS  Google Scholar 

  6. Iiyama K, Hajra L, Iiyama M, et al: Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ Res 1999; 85: 199–207.

    Article  CAS  Google Scholar 

  7. Alon R, Kassner PD, Carr MW, Finger EB, Hemler ME, Springer TA : The integrin VLA-4 supports tethering and rolling in flow on VCAM-1. J Cell Biol 1995; 128: 1243–1253.

    Article  CAS  Google Scholar 

  8. Pober JS, Cotran RS : The role of endothelial cells in inflammation. Transplantation 1990; 50: 537–544.

    Article  CAS  Google Scholar 

  9. Krasinski K, Spyridopoulos I, Kearney M, Losordo DW : In vivo blockade of tumor necrosis factor-alpha accelerates functional endothelial recovery after balloon angioplasty. Circulation 2001; 104: 1754–1756.

    Article  CAS  Google Scholar 

  10. Berk BC, Abe JI, Min W, Surapisitchat J, Yan C : Endothelial atheroprotective and anti-inflammatory mechanisms. Ann N Y Acad Sci 2001; 947: 93–111.

    Article  CAS  Google Scholar 

  11. Iademarco MF, McQuillan JJ, Rosen GD, Dean DC : Characterization of the promoter for vascular cell adhesion molecule-1 (VCAM-1). J Biol Chem 1992; 267: 16323–16329.

    CAS  PubMed  Google Scholar 

  12. Shaywitz AJ, Greenberg ME : CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 1999; 68: 821–861.

    Article  CAS  Google Scholar 

  13. Mayr B, Montminy M : Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001; 2: 599–609.

    Article  CAS  Google Scholar 

  14. Sheng M, Thompson MA, Greenberg ME : CREB: a Ca2+-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 1991; 252: 1427–1430.

    Article  CAS  Google Scholar 

  15. Xing J, Ginty DD, Greenberg ME : Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 1996; 273: 959–963.

    Article  CAS  Google Scholar 

  16. Sugawara A, Takeuchi K, Uruno A, Kudo M, Sato K, Ito S : Effects of mitogen-activated protein kinase pathway and co-activator CREP-binding protein on peroxisome proliferator-activated receptor-γ-mediated transcription suppression of angiotensin II type 1 receptor gene. Hypertens Res 2003; 26: 623–628.

    Article  CAS  Google Scholar 

  17. Tan Y, Rouse J, Zhang A, Cariati S, Cohen P, Comb MJ : FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J 1996; 15: 4629–4642.

    Article  CAS  Google Scholar 

  18. Du K, Montminy M : CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 1998; 273: 32377–32379.

    Article  CAS  Google Scholar 

  19. Baud V, and Karin M : Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 2001; 11: 372–377.

    Article  CAS  Google Scholar 

  20. Chen G, Goeddel DV : TNF-R1 signaling: a beautiful pathway. Science 2002; 296: 1634–1635.

    Article  CAS  Google Scholar 

  21. Tokunou T, Ichiki T, Takeda K, et al: Thrombin induces interleukin-6 expression through the cAMP response element in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2001; 21: 1759–1763.

    Article  CAS  Google Scholar 

  22. Somers JP, DeLoia JA, Zeleznik AJ : Adenovirus-directed expression of a nonphosphorylatable mutant of CREB (cAMP response element-binding protein) adversely affects the survival, but not the differentiation, of rat granulosa cells. Mol Endocrinol 1999; 13: 1364–1372.

    Article  CAS  Google Scholar 

  23. Funakoshi Y, Ichiki T, Ito K, Takeshita A : Induction of interleukin-6 expression by angiotensin II in rat vascular smooth muscle cells. Hypertension 1999; 34: 118–125.

    Article  CAS  Google Scholar 

  24. Frantz B, Klatt T, Pang M, et al: The activation state of p38 mitogen-activated protein kinase determines the efficiency of ATP competition for pyridinylimidazole inhibitor binding. Biochemistry 1998; 37: 13846–13853.

    Article  CAS  Google Scholar 

  25. Ryder JW, Fahlman R, Wallberg-Henriksson H, Alessi DR, Krook A, Zierath JR : Effect of contraction on mitogen-activated protein kinase signal transduction in skeletal muscle. Involvement of the mitogen- and stress-activated protein kinase 1. J Biol Chem 2000; 275: 1457–1462.

    Article  CAS  Google Scholar 

  26. Galan A, Garcia-Bermejo ML, Troyano A, et al: Stimulation of p38 mitogen-activated protein kinase is an early regulatory event for the cadmium-induced apoptosis in human promonocytic cells. J Biol Chem 2000; 275: 11418–11424.

    Article  CAS  Google Scholar 

  27. Ahmad M, Theofanidis P, Medford RM : Role of activating protein-1 in the regulation of the vascular cell adhesion molecule-1 gene expression by tumor necrosis factor-alpha. J Biol Chem 1998; 273: 4616–4621.

    Article  CAS  Google Scholar 

  28. Chinenov Y, Kerppola TK : Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 2001; 20: 2438–2452.

    Article  CAS  Google Scholar 

  29. Stein B, Baldwin AS Jr, Ballard DW, Greene WC, Angel P, Herrlich P : Cross-coupling of the NF-kappa B p65 and Fos/Jun transcription factors produces potentiated biological function. EMBO J 1993; 12: 3879–3891.

    Article  CAS  Google Scholar 

  30. Karin M : The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 1995; 270: 16483–16486.

    Article  CAS  Google Scholar 

  31. Ichiki T, Tokunou T, Fukuyama K, Iino N, Masuda S, Takeshita A : Cyclic AMP response element-binding protein mediates reactive oxygen species-induced c-fos expression. Hypertension 2003; 42: 177–183.

    Article  CAS  Google Scholar 

  32. Funakoshi Y, Ichiki T, Takeda K, Tokunou T, Iino N, Takeshita A : Critical role of cAMP-response element-binding protein for angiotensin II-induced hypertrophy of vascular smooth muscle cells. J Biol Chem 2002; 277: 18710–18717.

    Article  CAS  Google Scholar 

  33. Ichijo H : From receptors to stress-activated MAP kinases. Oncogene 1999; 18: 6087–6093.

    Article  CAS  Google Scholar 

  34. Kishore R, Luedemann C, Bord E, Goukassian D, Losordo DW : Tumor necrosis factor-mediated E2F1 suppression in endothelial cells: differential requirement of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase signal transduction pathways. Circ Res 2003; 93: 932–940.

    Article  CAS  Google Scholar 

  35. Rousseau S, Houle F, Landry J, Huot J : p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 1997; 15: 2169–2177.

    Article  CAS  Google Scholar 

  36. Matsumoto T, Turesson I, Book M, Gerwins P, Claesson-Welsh L : p38 MAP kinase negatively regulates endothelial cell survival, proliferation, and differentiation in FGF-2-stimulated angiogenesis. J Cell Biol 2002; 156: 149–160.

    Article  CAS  Google Scholar 

  37. Hale KK, Trollinger D, Rihanek M, Manthey CL : Differential expression and activation of p38 mitogen-activated protein kinase alpha, beta, gamma, and delta in inflammatory cell lineages. J Immunol 1999; 162: 4246–4252.

    CAS  PubMed  Google Scholar 

  38. Lusis AJ : Atherosclerosis. Nature 2000; 407: 233–241.

    Article  CAS  Google Scholar 

  39. Moore KL, Patel KD, Bruehl RE, et al: P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J Cell Biol 1995; 128: 661–671.

    Article  CAS  Google Scholar 

  40. Dong ZM, Chapman SM, Brown AA, Frenette PS, Hynes RO, Wagner DD : The combined role of P- and E-selectins in atherosclerosis. J Clin Invest 1998; 102: 145–152.

    Article  CAS  Google Scholar 

  41. Gurtner GC, Davis V, Li H, McCoy MJ, Sharpe A, Cybulsky MI : Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev 1995; 9: 1–14.

    Article  CAS  Google Scholar 

  42. Cybulsky MI, Iiyama K, Li H, et al: A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 2001; 107: 1255–1262.

    Article  CAS  Google Scholar 

  43. Pueyo ME, Gonzalez W, Nicoletti A, Savoie F, Arnal JF, Michel JB : Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation induced by intracellular oxidative stress. Arterioscler Thromb Vasc Biol 2000; 20: 645–651.

    Article  CAS  Google Scholar 

  44. Costanzo A, Moretti F, Burgio VL, et al: Endothelial activation by angiotensin II through NFkappaB and p38 pathways: involvement of NFkappaB-inducible kinase (NIK), free oxygen radicals, and selective inhibition by aspirin. J Cell Physiol 2003; 195: 402–410.

    Article  CAS  Google Scholar 

  45. Yoshimoto T, Gochou N, Fukai N, Sugiyama T, Shichiri M, Hirata Y : Adrenomedullin inhibits angiotensin II-induced oxidative stress and gene expression in rat endothelial cells. Hypertens Res 2005; 28: 165–172.

    Article  CAS  Google Scholar 

  46. Ju H, Behm DJ, Nerurkar S, et al: p38 MAPK inhibitors ameliorate target organ damage in hypertension: Part 1. p38 MAPK-dependent endothelial dysfunction and hypertension. J Pharmacol Exp Ther 2003; 307: 932–938.

    Article  CAS  Google Scholar 

  47. Xu Q, Liu Y, Gorospe M, Udelsman R, Holbrook J : Acute hypertension activates mitogen-activated protein kinases in arterial wall. J Clin Invest 1996; 97: 508–514.

    Article  CAS  Google Scholar 

  48. Imai G, Satoh T, Kumai T, et al: Hypertension accelerates diabetic nephropathy in Wistar fatty rats, a model of type 2 diabetes mellitus, via mitogen-activated protein kinase cascades and transforming growth factor-beta1. Hypertens Res 2003; 26: 339–347.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan

    Hiroki Ono, Toshihiro Ichiki, Hideki Ohtsubo, Kae Fukuyama, Ikuyo Imayama, Naoko Iino, Satoko Masuda, Yasuko Hashiguchi, Akira Takeshita & Kenji Sunagawa

Authors
  1. Hiroki Ono
    View author publications

    Search author on:PubMed Google Scholar

  2. Toshihiro Ichiki
    View author publications

    Search author on:PubMed Google Scholar

  3. Hideki Ohtsubo
    View author publications

    Search author on:PubMed Google Scholar

  4. Kae Fukuyama
    View author publications

    Search author on:PubMed Google Scholar

  5. Ikuyo Imayama
    View author publications

    Search author on:PubMed Google Scholar

  6. Naoko Iino
    View author publications

    Search author on:PubMed Google Scholar

  7. Satoko Masuda
    View author publications

    Search author on:PubMed Google Scholar

  8. Yasuko Hashiguchi
    View author publications

    Search author on:PubMed Google Scholar

  9. Akira Takeshita
    View author publications

    Search author on:PubMed Google Scholar

  10. Kenji Sunagawa
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Toshihiro Ichiki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ono, H., Ichiki, T., Ohtsubo, H. et al. cAMP-Response Element-Binding Protein Mediates Tumor Necrosis Factor-α-Induced Vascular Cell Adhesion Molecule-1 Expression in Endothelial Cells. Hypertens Res 29, 39–47 (2006). https://doi.org/10.1291/hypres.29.39

Download citation

  • Received: 16 June 2005

  • Accepted: 07 November 2005

  • Issue date: 01 January 2006

  • DOI: https://doi.org/10.1291/hypres.29.39

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • endothelial factors
  • cytokine
  • gene expression
  • mitogen-activated protein kinase
  • signal transduction

This article is cited by

  • The cyclic AMP response element‐binding protein (CREB) mediates smooth muscle cell proliferation in response to angiotensin II

    • Peter Molnar
    • Raissa Perrault
    • Peter Zahradka

    Journal of Cell Communication and Signaling (2014)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited