Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Amelioration of Hypertensive Heart Failure by Amlodipine May Occur via Antioxidative Effects
Download PDF
Download PDF
  • Original Article
  • Published: 01 September 2006

Amelioration of Hypertensive Heart Failure by Amlodipine May Occur via Antioxidative Effects

  • Hiroshi Hasegawa1,
  • Hiroyuki Takano1,
  • Takahide Kohro2,
  • Kazutaka Ueda1,
  • Yuriko Niitsuma1,
  • Hiroyuki Aburatani2 &
  • …
  • Issei Komuro1 

Hypertension Research volume 29, pages 719–729 (2006)Cite this article

  • 1107 Accesses

  • Metrics details

Abstract

Although recent clinical studies have suggested that long-acting calcium channel blockers (CCBs) have beneficial effects on heart failure, the precise mechanism is unknown. In this study, Dahl salt-sensitive rats fed a high salt diet were treated with the long-acting CCB amlodipine, the low–molecular-weight membrane permeable superoxide dismutase mimetic 4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl (Tempol), or saline from 11 weeks after birth. The cardiac geometry and function, and gene expression profiles were determined at 17 weeks. Dahl salt-sensitive rats fed a high salt diet followed by saline as a non-treatment control (HS group) showed a marked increase in blood pressure and developed concentric hypertrophy at 11 weeks, followed by left ventricular (LV) dilation and congestive heart failure by 17 weeks. The treatment with amlodipine (AMLO group) or Tempol (TEMP group) significantly inhibited the development of LV hypertrophy and cardiac dysfunction. Analysis using an Affymetrix GeneChip U34 revealed that the expression levels of 195 genes were changed by the treatment with amlodipine. Among these 195 genes, 110 genes were increased in HS rats and decreased in AMLO rats. And of these 110 genes, 54 genes were also decreased in TEMP rats. In contrast, 85 genes were decreased in HS rats and increased in AMLO rats. Of these 85 genes, 38 genes were also increased in TEMP rats. Approximately 48% of the genes were changed in similar fashion in AMLO and TEMP rats, suggesting that amlodipine shows beneficial effects on heart failure mainly via antioxidative mechanisms.

Similar content being viewed by others

Phase III randomized clinical trial of efficacy and safety of amlodipine and candesartan cilexetil combination for hypertension treatment

Article Open access 03 October 2024

The treatment with trandolapril and losartan attenuates pressure and volume overload alternations of cardiac connexin-43 and extracellular matrix in Ren-2 transgenic rats

Article Open access 27 November 2023

Geniposide alleviates heart failure with preserved ejection fraction in mice by regulating cardiac oxidative stress via MMP2/SIRT1/GSK3β pathway

Article 26 July 2024

Article PDF

References

  1. Levy D, Garrison RJ, Savage DD, et al: Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990; 322: 1561–1566.

    Article  CAS  Google Scholar 

  2. Frohlich ED : Cardiac hypertrophy in hypertension. N Engl J Med 1987; 317: 831–833.

    Article  CAS  Google Scholar 

  3. Katz AM : The cardiomyopathy of overload: an unnatural growth response in the hypertrophied heart. Ann Intern Med 1994; 121: 363–371.

    Article  CAS  Google Scholar 

  4. Tavi P, Laine M, Weckstrom M, et al: Cardiac mechanotransduction: from sensing to disease and treatment. Trends Pharmacol Sci 2001; 22: 254–260.

    Article  CAS  Google Scholar 

  5. Komuro I : Molecular mechanism of cardiac hypertrophy and development. Jpn Circ J 2001; 65: 353–358.

    Article  CAS  Google Scholar 

  6. Chobanian AV, Bakris GL, Black HR, et al, National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National High Blood Pressure Education Program Coordinating Committee: The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 2003; 289: 2560–2572.

    Article  CAS  Google Scholar 

  7. Wilcox RG, Hampton JR, Banks DC, et al: Trial of early nifedipine in acute myocardial infarction: the Trent study. Br Med J 1986; 293: 1204–1208.

    Article  CAS  Google Scholar 

  8. The Israeli Sprint Study Group: Secondary prevention reinfarction Israeli nifedipine trial (SPRINT). A randomized intervention trial of nifedipine in patients with acute myocardial infarction. Eur Heart J 1988; 9: 354–364.

  9. Furberg CD, Psaty BM, Meyer JV : Nifedipine. Dose-related increase in mortality in patients with coronary heart disease. Circulation 1995; 92: 1326–1331.

    Article  CAS  Google Scholar 

  10. Spinale FG, Mukherjee R, Krombach RS, et al: Chronic amlodipine treatment during the development of heart failure. Circulation 1998; 98: 1666–1674.

    Article  CAS  Google Scholar 

  11. Lubsen J, Wagener G, Kirwan BA, et al: Effect of long-acting nifedipine on mortality and cardiovascular morbidity in patients with symptomatic stable angina and hypertension: the ACTION trial. J Hypertens 2005; 23: 641–648.

    Article  CAS  Google Scholar 

  12. Poole-Wilson PA, Lubsen J, Kirwan BA, et al: Effect of long-acting nifedipine on mortality and cardiovascular morbidity in patients with stable angina requiring treatment (ACTION trial): randomised controlled trial. Lancet 2004; 364: 849–857.

    Article  CAS  Google Scholar 

  13. Mason RP, Campbell SF, Wang SD, Herbette LG : Comparison of location and binding for the positively charged 1,4-dihydropyridine calcium channel antagonist amlodipine with uncharged drugs of this class in cardiac membranes. Mol Pharmacol 1989; 36: 634–640.

    CAS  PubMed  Google Scholar 

  14. Zhang X, Hintze TH : Amlodipine releases nitric oxide from canine coronary microvessels: an unexpected mechanism of action of a calcium channel–blocking agent. Circulation 1998; 97: 576–580.

    Article  CAS  Google Scholar 

  15. Cominacini L, Pasini AF, Pastorino AM, et al: Comparative effects of different dihydropyridines on the expression of adhesion molecules induced by TNF-alpha on endothelial cells. J Hypertens 1999; 17: 1837–1841.

    Article  CAS  Google Scholar 

  16. Ikeda U, Hojo Y, Ueno S, Arakawa H, Shimada K : Amlodipine inhibits expression of matrix metalloproteinase-1 and its inhibitor in human vascular endothelial cells. J Cardiovasc Pharmacol 2000; 35: 887–890.

    Article  CAS  Google Scholar 

  17. Mason RP, Marche P, Hintze TH : Novel vascular biology of third-generation L-type calcium channel antagonists: ancillary actions of amlodipine. Arterioscler Thromb Vasc Biol 2003; 23: 2155–2163.

    Article  CAS  Google Scholar 

  18. Rapp JP, Wang SM, Dene H : A genetic polymorphism in the renin gene of Dahl rats cosegregates with blood pressure. Science 1989; 243: 542–544.

    Article  CAS  Google Scholar 

  19. Inoko M, Kihara Y, Morii I, et al: Transition from compensatory hypertrophy to dilated, failing left ventricles in Dahl salt-sensitive rats. Am J Physiol 1994; 267: H2471–H2482.

    CAS  PubMed  Google Scholar 

  20. Inoko M, Kihara Y, Sasayama S : Neurohumoral factors during transition from left ventricular hypertrophy to failure in Dahl salt-sensitive rats. Biochem Biophys Res Commun 1995; 206: 814–820.

    Article  CAS  Google Scholar 

  21. Iwanaga Y, Kihara Y, Hasegawa K, et al: Cardiac endothelin-1 plays a critical role in the functional deterioration of left ventricles during the transition from compensatory hypertrophy to congestive heart failure in salt-sensitive hypertensive rats. Circulation 1998; 98: 2065–2073.

    Article  CAS  Google Scholar 

  22. Nishikawa N, Masuyama T, Yamamoto K, et al: Long-term administration of amlodipine prevents decompensation to diastolic heart failure in hypertensive rats. J Am Coll Cardiol 2001; 38: 1539–1545.

    Article  CAS  Google Scholar 

  23. Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM : Expression profiling using cDNA microarrays. Nat Genet 1999; 21: 10–14.

    Article  CAS  Google Scholar 

  24. Shiffman D, Porter JG : Gene expression profiling of cardiovascular disease models. Curr Opin Biotechnol 2000; 11: 598–601.

    Article  CAS  Google Scholar 

  25. Hasegawa H, Yamamoto R, Takano H, et al: 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors prevent the development of cardiac hypertrophy and heart failure in rats. J Mol Cell Cardiol 2003; 35: 953–960.

    Article  CAS  Google Scholar 

  26. Shimoyama M, Hayashi D, Zou Y, et al: Calcineurin inhibitor attenuates the development and induces the regression of cardiac hypertrophy in rats with salt-sensitive hypertension. Circulation 2000; 102: 1996–2004.

    Article  CAS  Google Scholar 

  27. Liu YH, Carretero OA, Cingolani OH, et al: Role of inducible nitric oxide synthase in cardiac function and remodeling in mice with heart failure due to myocardial infarction. Am J Physiol Heart Circ Physiol 2005; 289: H2616–H2623.

    Article  CAS  Google Scholar 

  28. Ishii M, Hashimoto S, Tsutsumi S, et al: Direct comparison of GeneChip and SAGE on the quantitative accuracy in transcript profiling analysis. Genomics 2000; 68: 136–143.

    Article  CAS  Google Scholar 

  29. Lockhart DJ, Dong H, Byrne MC, et al: Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 1996; 14: 1675–1680.

    Article  CAS  Google Scholar 

  30. Lee CK, Klopp RG, Weindruch R, et al: Gene expression profile of aging and its retardation by caloric restriction. Science 1999; 285: 1390–1393.

    Article  CAS  Google Scholar 

  31. Mizukami M, Hasegawa H, Kohro T, et al: Gene expression profile revealed different effects of angiotensin II receptor blockade and angiotensin-converting enzyme inhibitor on heart failure. J Cardiovasc Pharmacol 2003; 42: S1–S6.

    Article  CAS  Google Scholar 

  32. Ikeda S, Hamada M, Qu P, et al: Relationship between cardiomyocyte cell death and cardiac function during hypertensive cardiac remodelling in Dahl rats. Clin Sci 2002; 102: 329–335.

    Article  Google Scholar 

  33. Shioi T, Matsumori A, Kihara Y, et al: Increased expression of interleukin-1 beta and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the hypertrophied and failing heart with pressure overload. Circ Res 1997; 81: 664–671.

    Article  CAS  Google Scholar 

  34. Elmedal B, de Dam MY, Mulvany MJ, et al: The superoxide dismutase mimetic, tempol, blunts right ventricular hypertrophy in chronic hypoxic rats. Br J Pharmacol 2004; 141: 105–113.

    Article  CAS  Google Scholar 

  35. Zhang GX, Kimura S, Nishiyama A, et al: Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovasc Res 2005; 65: 230–238.

    Article  CAS  Google Scholar 

  36. Yoshida K, Kim-Mitsuyama S, Wake R, et al: Excess aldosterone under normal salt diet induces cardiac hypertrophy and infiltration via oxidative stress. Hypertens Res 2005; 28: 447–455.

    Article  CAS  Google Scholar 

  37. Yamamoto K, Masuyama T, Sakata Y, et al: Roles of renin-angiotensin and endothelin systems in development of diastolic heart failure in hypertensive hearts. Cardiovasc Res 2000; 47: 274–283.

    Article  CAS  Google Scholar 

  38. Hayashida W, Kihara Y, Yasaka A, Sasayama S : Cardiac calcineurin during transition from hypertrophy to heart failure in rats. Biochem Biophys Res Commun 2000; 273: 347–351.

    Article  CAS  Google Scholar 

  39. Iwanaga Y, Kihara Y, Inagaki K, et al: Differential effects of angiotensin II versus endothelin-1 inhibitions in hypertrophic left ventricular myocardium during transition to heart failure. Circulation 2001; 104: 606–612.

    Article  CAS  Google Scholar 

  40. Mason RP, Walter MF, Trumbore MW, Olmstead EG Jr, Mason PE : Membrane antioxidant effects of the charged dihydropyridine calcium antagonist amlodipine. J Mol Cell Cardiol 1999; 31: 275–281.

    Article  CAS  Google Scholar 

  41. Umemoto S, Tanaka M, Kawahara S, et al: Calcium antagonist reduces oxidative stress by upregulating Cu/Zn superoxide dismutase in stroke-prone spontaneously hypertensive rats. Hypertens Res 2004; 27: 877–885.

    Article  CAS  Google Scholar 

  42. Wen Y, Gu J, Peng X, Zhang G, Nadler J : Overexpression of 12-lipoxygenase and cardiac fibroblast hypertrophy. Trends Cardiovasc Med 2003; 13: 129–136.

    Article  CAS  Google Scholar 

  43. Niederau C, Schonberg M : New developments in the pathophysiology of inflammatory pancreatic disease. Hepatogastroenterology 1999; 46: 2722.

    CAS  PubMed  Google Scholar 

  44. Raposo B, Rodriguez C, Martinez-Gonzalez J, Badimon L : High levels of homocysteine inhibit lysyl oxidase (LOX) and downregulate LOX expression in vascular endothelial cells. Atherosclerosis 2004; 177: 1–8.

    Article  CAS  Google Scholar 

  45. Poon HF, Vaishnav RA, Butterfield DA, et al: Proteomic identification of differentially expressed proteins in the aging murine olfactory system and transcriptional analysis of the associated genes. J Neurochem 2005; 94: 380–392.

    Article  CAS  Google Scholar 

  46. Baumann R, Casaulta C, Simon D, Conus S, Yousefi S, Simon HU : Macrophage migration inhibitory factor delays apoptosis in neutrophils by inhibiting the mitochondria-dependent death pathway. FASEB J 2003; 17: 2221–2230.

    Article  CAS  Google Scholar 

  47. Leng L, Metz CN, Fang Y, et al: MIF signal transduction initiated by binding to CD74. J Exp Med 2003; 197: 1467–1476.

    Article  CAS  Google Scholar 

  48. Xiang G, Schuster MD, Seki T, et al: Down-regulation of plasminogen activator inhibitor 1 expression promotes myocardial neovascularization by bone marrow progenitors. J Exp Med 2004; 200: 1657–1666.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan

    Hiroshi Hasegawa, Hiroyuki Takano, Kazutaka Ueda, Yuriko Niitsuma & Issei Komuro

  2. Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan

    Takahide Kohro & Hiroyuki Aburatani

Authors
  1. Hiroshi Hasegawa
    View author publications

    Search author on:PubMed Google Scholar

  2. Hiroyuki Takano
    View author publications

    Search author on:PubMed Google Scholar

  3. Takahide Kohro
    View author publications

    Search author on:PubMed Google Scholar

  4. Kazutaka Ueda
    View author publications

    Search author on:PubMed Google Scholar

  5. Yuriko Niitsuma
    View author publications

    Search author on:PubMed Google Scholar

  6. Hiroyuki Aburatani
    View author publications

    Search author on:PubMed Google Scholar

  7. Issei Komuro
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Issei Komuro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, H., Takano, H., Kohro, T. et al. Amelioration of Hypertensive Heart Failure by Amlodipine May Occur via Antioxidative Effects. Hypertens Res 29, 719–729 (2006). https://doi.org/10.1291/hypres.29.719

Download citation

  • Received: 24 January 2006

  • Accepted: 29 May 2006

  • Issue date: 01 September 2006

  • DOI: https://doi.org/10.1291/hypres.29.719

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • amlodipine
  • Dahl rat
  • gene chip
  • heart failure
  • hypertension

This article is cited by

  • Xyloketal B exerts antihypertensive effect in renovascular hypertensive rats via the NO-sGC-cGMP pathway and calcium signaling

    • Li-yan Zhao
    • Jie Li
    • Yao-min Du

    Acta Pharmacologica Sinica (2018)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited