Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Aldosterone-and-Salt–Induced Cardiac Fibrosis Is Independent from Angiotensin II Type 1a Receptor Signaling in Mice
Download PDF
Download PDF
  • Original Article
  • Published: 01 October 2007

Aldosterone-and-Salt–Induced Cardiac Fibrosis Is Independent from Angiotensin II Type 1a Receptor Signaling in Mice

  • Shuntaro Kagiyama1,
  • Kiyoshi Matsumura1,
  • Masayo Fukuhara1,
  • Kanae Sakagami1,
  • Koji Fujii1 &
  • …
  • Mitsuo Iida1 

Hypertension Research volume 30, pages 979–989 (2007)Cite this article

  • 1886 Accesses

  • Metrics details

Abstract

Aldosterone infusion with high salt treatment induces cardiac fibrosis in rats. Aldosterone enhanced angiotensin II (Ang II) has been shown to induce proliferation and increase the expression of Ang II receptor mRNA and Ang II binding in vitro. To investigate the role of Ang II type 1a receptor (AT1aR) in aldosterone-and-salt (Ald-NaCl)−induced cardiac fibrosis, we subcutaneously infused aldosterone (0.15 μg/h) and 1% NaCl (Ald-NaCl) into AT1aR knockout mice (AT1aR-KO) or wild type mice (Wt). To examine the role of NaCl on cardiac fibrosis, we gave some of the aldosterone-treated AT1aR-KO tap water (Ald-H2O). Ald-NaCl treatment increased systolic blood pressure and induced cardiac hypertrophy in both strains, whereas there were no such changes in the mice without aldosterone. Severe cardiac fibrosis was seen in Ald-NaCl–treated AT1aR-KO and not in Ald-NaCl–treated Wt. In contrast, Ald-NaCl–treated Wt with co-administration of an active metabolite of olmesartan, the AT1aR antagonist (10 mg/kg/day) did not show cardiac fibrosis. Na+/H+ exchanger, and Na+-K+ ATPase α2 subunit mRNA were decreased in AT1aR-KO. Na+/Ca2+ exchanger mRNA was lower in AT1aR-KO than Wt and was decreased by Ald-NaCl in both strains. Phosphorylation of epidermal growth factor receptor and extracellular signal–regulated kinase was increased by Ald-NaCl treatment in AT1aR-KO. Connective tissue growth factor (CTGF) and osteopontin mRNA were increased and accumulation of CTGF proteins was seen in the hearts of Ald-NaCl–treated AT1aR-KO. Ald-H2O–treated AT1aR-KO did not show any cardiac fibrosis. These results suggest that Ald-NaCl–induced cardiac fibrosis required both aldosterone and salt. Because cardiac fibrosis was exaggerated in Ald-NaCl–treated AT1aR-KO but was not seen in Wt treated with Ald-NaCl and olmesartan, AT1aR may not play a primary role in progression of cardiac fibrosis by Ald-NaCl, and gene disruption of AT1aR may have some implications in this model.

Similar content being viewed by others

S-nitrosylation of c-Jun N-terminal kinase mediates pressure overload-induced cardiac dysfunction and fibrosis

Article 19 May 2021

Angiotensin type 1 and type 2 receptors-induced mitochondrial dysfunction promotes ferroptosis in cardiomyocytes

Article 09 January 2025

The adipokine Retnla deficiency increases responsiveness to cardiac repair through adiponectin-rich bone marrow cells

Article Open access 22 March 2021

Article PDF

References

  1. Pearce P, Funder JW : High affinity aldosterone binding sites (type I receptors) in rat heart. Clin Exp Pharmacol Physiol 1987; 14: 859–866.

    Article  CAS  PubMed  Google Scholar 

  2. Lombès M, Oblin ME, Gasc JM, Baulieu EE, Farman N, Bonvalet JP : Immunohistochemical and biochemical evidence for a cardiovascular mineralocorticoid receptor. Circ Res 1992; 71: 503–510.

    Article  PubMed  Google Scholar 

  3. Takeda Y, Miyamori I, Inaba S, et al: Vascular aldosterone in genetically hypertensive rats. Hypertension 1997; 29: 45–48.

    Article  CAS  PubMed  Google Scholar 

  4. Brilla CG, Weber KT : Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J Lab Clin Med 1992; 120: 893–901.

    CAS  Google Scholar 

  5. Robert V, Silvestre JS, Charlemagne D, et al: Biological determinants of aldosterone-induced cardiac fibrosis in rats. Hypertension 1995; 26: 971–978.

    Article  CAS  Google Scholar 

  6. Rocha R, Rudolph AE, Frierdich GE, et al: Aldosterone induces a vascular inflammatory phenotype in the rat heart. Am J Physiol Heart Circ Physiol 2002; 283: H1802–H1810.

    Article  CAS  Google Scholar 

  7. Swedberg K, Eneroth P, Kjekshus J, Wilhelmsen L, CONSENSUS Trial Study Group: Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality. Circulation 1990; 82: 1730–1736.

    Article  CAS  PubMed  Google Scholar 

  8. Pitt B, Zannad F, Remme WJ, et al, Randomized Aldactone Evaluation Study Investigators : The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 1999; 341: 709–717.

    Article  CAS  Google Scholar 

  9. Pitt B, Remme W, Zannad F, et al: Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003; 348: 1309–1321.

    Article  CAS  Google Scholar 

  10. Robert V, Heymes C, Silvestre JS, Sabri A, Swynghedauw B, Delcayre C : Angiotensin AT1 receptor subtype as a cardiac target of aldosterone: role in aldosterone-salt–induced fibrosis. Hypertension 1999; 33: 981–986.

    Article  CAS  PubMed  Google Scholar 

  11. Schiffrin EL, Franks DJ, Gutkowska J : Effect of aldosterone on vascular angiotensin II receptors in the rat. Can J Physiol Pharmacol 1985; 63: 1522–1527.

    Article  CAS  PubMed  Google Scholar 

  12. Xiao F, Puddefoot JR, Barker S, Vinson GP : Mechanism for aldosterone potentiation of angiotensin II–stimulated rat arterial smooth muscle cell proliferation. Hypertension 2004; 44: 340–345.

    Article  CAS  PubMed  Google Scholar 

  13. Mihailidou AS, Mardini M, Funder JW, Raison M : Mineralocorticoid and angiotensin receptor antagonism during hyperaldosteronemia. Hypertension 2002; 40: 124–129.

    Article  CAS  PubMed  Google Scholar 

  14. Kagiyama S, Eguchi S, Frank GD, Inagami T, Zhang YC, Phillips MI : Angiotensin II–induced cardiac hypertrophy and hypertension are attenuated by epidermal growth factor receptor antisense. Circulation 2002; 106: 909–912.

    Article  CAS  PubMed  Google Scholar 

  15. Kagiyama S, Qian K, Kagiyama T, Phillips MI : Antisense to epidermal growth factor receptor prevents the development of left ventricular hypertrophy. Hypertension 2003; 41: 824–829.

    Article  CAS  PubMed  Google Scholar 

  16. Nakano S, Kobayashi N, Yoshida K, Ohno T, Matsuoka H : Cardioprotective mechanisms of spironolactone associated with the angiotensin-converting enzyme/epidermal growth factor receptor/extracellular signal–regulated kinases, NAD(P)H oxidase/lectin-like oxidized low-density lipoprotein receptor-1, and Rho-kinase pathways in aldosterone/salt-induced hypertensive rats. Hypertens Res 2005; 28: 925–936.

    Article  CAS  PubMed  Google Scholar 

  17. Fan YY, Baba R, Nagai Y, et al: Augmentation of intrarenal angiotensin II levels in uninephrectomized aldosterone/salt-treated hypertensive rats; renoprotective effects of an ultrahigh dose of olmesartan. Hypertens Res 2006; 29: 169–178.

    Article  CAS  PubMed  Google Scholar 

  18. Sugiyama T, Yoshimoto T, Hirono Y, et al: Aldosterone increases osteopontin gene expression in rat endothelial cells. Biochem Biophys Res Commun 2005; 336: 163–167.

    Article  CAS  PubMed  Google Scholar 

  19. Sam F, Xie Z, Ooi H, et al: Mice lacking osteopontin exhibit increased left ventricular dilation and reduced fibrosis after aldosterone infusion. Am J Hypertens 2004; 17: 188–193.

    Article  CAS  PubMed  Google Scholar 

  20. Oliverio MI, Best CF, Smithies O, Coffman TM : Regulation of sodium balance and blood pressure by the AT1A receptor for angiotensin II. Hypertension 2000; 35: 550–554.

    Article  CAS  PubMed  Google Scholar 

  21. Jaffe IZ, Mendelsohn ME : Angiotensin II and aldosterone regulate gene transcription via functional mineralocortocoid receptors in human coronary artery smooth muscle cells. Circ Res 2005; 96: 643–650.

    Article  CAS  PubMed  Google Scholar 

  22. Mazak I, Fiebeler A, Muller DN, et al: Aldosterone potentiates angiotensin II–induced signaling in vascular smooth muscle cells. Circulation 2004; 109: 2792–2800.

    Article  CAS  PubMed  Google Scholar 

  23. Sun Y, Weber KT : Angiotensin II and aldosterone receptor binding in rat heart and kidney: response to chronic angiotensin II or aldosterone administration. J Lab Clin Med 1993; 122: 404–411.

    CAS  PubMed  Google Scholar 

  24. Bhargava A, Fullerton MJ, Myles K, et al: The serum- and glucocorticoid-induced kinase is a physiological mediator of aldosterone action. Endocrinology 2001; 142: 1587–1594.

    Article  CAS  PubMed  Google Scholar 

  25. Katada J, Meguro T, Saito H, et al: Persistent cardiac aldosterone synthesis in angiotensin II type 1A receptor–knockout mice after myocardial infarction. Circulation 2005; 111: 2157–2164.

    Article  CAS  PubMed  Google Scholar 

  26. Hall CE, Hall O : Hypertension and hypersalimentation. II. Deoxycorticosterone hypertension. Lab Invest 1965; 14: 1727–1735.

    CAS  PubMed  Google Scholar 

  27. Yoshida K, Kim-Mitsuyama S, Wake R, et al: Excess aldosterone under normal salt diet induces cardiac hypertrophy and infiltration via oxidative stress. Hypertens Res 2005; 28: 447–455.

    Article  CAS  PubMed  Google Scholar 

  28. Ma J, Weisberg A, Griffin JP, Vaughan DE, Fogo AB, Brown NJ : Plasminogen activator inhibitor-1 deficiency protects against aldosterone-induced glomerular injury. Kidney Int 2006; 69: 1064–1072.

    Article  CAS  PubMed  Google Scholar 

  29. Ullian ME, Islam MM, Robinson CJ, Fitzgibbon WR, Tobin ET, Paul RV : Resistance to mineralocorticoids in Wistar-Furth rats. Am J Physiol 1997; 272: H1454–H1461.

    CAS  PubMed  Google Scholar 

  30. Yamamuro M, Yoshimura M, Nakayama M, et al: Direct effects of aldosterone on cardiomyocytes in the presence of normal and elevated extracellular sodium. Endocrinology 2006; 147: 1314–1321.

    Article  CAS  PubMed  Google Scholar 

  31. Ramirez-Gil JF, Trouve P, Mougenot N, Carayon A, Lechat P, Charlemagne D : Modifications of myocardial Na+,K+-ATPase isoforms and Na+/Ca2+ exchanger in aldosterone/salt-induced hypertension in guinea pigs. Cardiovasc Res 1998; 38: 451–462.

    Article  CAS  PubMed  Google Scholar 

  32. Romero JR, Rivera A, Lanca V, Bicho MD, Conlin PR, Ricupero DA : Na+/Ca2+ exchanger activity modulates connective tissue growth factor mRNA expression in transforming growth factor β1- and Des-Arg10-kallidin–stimulated myofibroblasts. J Biol Chem 2005; 280: 14378–14384.

    Article  CAS  PubMed  Google Scholar 

  33. Shanahan CM, Cary NR, Metcalfe JC, Weissberg PL : High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J Clin Invest 1994; 93: 2393–2402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oliverio MI, Delnomdedieu M, Best CF, et al: Abnormal water metabolism in mice lacking the type 1A receptor for ANG II. Am J Physiol Renal Physiol 2000; 278: F75–F82.

    Article  CAS  PubMed  Google Scholar 

  35. Maitland K, Bridges L, Davis WP, Loscalzo J, Pointer MA : Different effects of angiotensin receptor blockade on end-organ damage in salt-dependent and salt-independent hypertension. Circulation 2006; 114: 905–911.

    Article  CAS  PubMed  Google Scholar 

  36. Iwamoto T, Kita S, Zhang J, et al: Salt-sensitive hypertension is triggered by Ca2+ entry via Na+/Ca2+ exchanger type-1 in vascular smooth muscle. Nat Med 2004; 10: 1193–1199.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

    Shuntaro Kagiyama, Kiyoshi Matsumura, Masayo Fukuhara, Kanae Sakagami, Koji Fujii & Mitsuo Iida

Authors
  1. Shuntaro Kagiyama
    View author publications

    Search author on:PubMed Google Scholar

  2. Kiyoshi Matsumura
    View author publications

    Search author on:PubMed Google Scholar

  3. Masayo Fukuhara
    View author publications

    Search author on:PubMed Google Scholar

  4. Kanae Sakagami
    View author publications

    Search author on:PubMed Google Scholar

  5. Koji Fujii
    View author publications

    Search author on:PubMed Google Scholar

  6. Mitsuo Iida
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Shuntaro Kagiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagiyama, S., Matsumura, K., Fukuhara, M. et al. Aldosterone-and-Salt–Induced Cardiac Fibrosis Is Independent from Angiotensin II Type 1a Receptor Signaling in Mice. Hypertens Res 30, 979–989 (2007). https://doi.org/10.1291/hypres.30.979

Download citation

  • Received: 16 November 2006

  • Accepted: 18 May 2007

  • Issue date: 01 October 2007

  • DOI: https://doi.org/10.1291/hypres.30.979

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • aldosterone
  • angiotensin II
  • knockout mouse
  • cardiac fibrosis
  • sodium

This article is cited by

  • Moderate inappropriately high aldosterone/NaCl constellation in mice: cardiovascular effects and the role of cardiovascular epidermal growth factor receptor

    • Barbara Schreier
    • Sindy Rabe
    • Michael Gekle

    Scientific Reports (2014)

  • Effects of eplerenone, a selective mineralocorticoid receptor antagonist, on clinical and experimental salt-sensitive hypertension

    • Yoshiyu Takeda

    Hypertension Research (2009)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited