Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Aortic Pulse Wave Velocity and Carotid-Femoral Pulse Wave Velocity: Similarities and Discrepancies
Download PDF
Download PDF
  • Original Article
  • Published: 01 December 2007

Aortic Pulse Wave Velocity and Carotid-Femoral Pulse Wave Velocity: Similarities and Discrepancies

  • Piotr Podolec1,
  • Grzegorz Kopeć1,
  • Jakub Podolec2,
  • Piotr Wilkołek1,
  • Marek Krochin1,
  • Paweł Rubiś1,
  • Marcin Cwynar3,
  • Tomasz Grodzicki3,
  • Krzysztof Żmudka2 &
  • …
  • Wiesława Tracz1 

Hypertension Research volume 30, pages 1151–1158 (2007)Cite this article

  • 3071 Accesses

  • 3 Altmetric

  • Metrics details

Abstract

The objectives of this study were to determine the relationship between carotid-femoral (cfPWV) and aortic pulse wave velocity (aPWV) and to compare their modulators and association with coronary artery disease (CAD). We studied 107 consecutive patients (68 men) with a mean age of 60.49±8.31 years who had stable angina and had been referred for coronary angiography. cfPWV and aPWV were measured simultaneously during cardiac catheterization using the Complior® device and aortic pressure waveform recordings, respectively. Based on the presence or absence of significant coronary artery stenosis (CAS) patients were subdivided into a CAS+ or CAS− group. The mean values of cfPWV and aPWV were 10.65±2.29 m/s and 8.78±2.24 m/s, respectively. They were significantly higher in the CAS+ (n=71) compared with the CAS− (n=36) group and predicted significant CAS independently of cardiovascular risk factors and mean or systolic aortic blood pressure. aPWV and cfPWV were significantly correlated (r=0.70; p<0.001) but the degree of correlation differed significantly (p<0.03) between the CAS+ (r=0.74, p<0.001) and CAS− group (r=0.46, p=0.003). Age and mean aortic blood pressure were independent predictors for aPWV as well as cfPWV. In the receiver operating characteristic (ROC) analysis, aPWV and cfPWV had similar accuracy in identification of significant CAS (AUC [area under the ROC curve]=0.76 and 0.69, respectively; p=0.13). However, neither cfPWV nor aPWV was effective at differentiating the extent of CAD. In conclusion, aPWV and cfPWV are highly correlated parameters with similar determinants and comparable accuracy in predicting significant CAS. The strength of correlation between these two indices differed significantly between subjects with and those without CAS.

Similar content being viewed by others

Cross-sectional and longitudinal evaluation of heart-to-brachium pulse wave velocity for cardiovascular disease risk

Article Open access 01 August 2024

Brachial-ankle pulse wave velocity and prognosis in patients with atherosclerotic cardiovascular disease: a systematic review and meta-analysis

Article 14 June 2021

Improving the accuracy and robustness of carotid-femoral pulse wave velocity measurement using a simplified tube-load model

Article Open access 25 March 2022

Article PDF

References

  1. Meaume S, Benetos A, Henry OF : Aortic pulse wave velocity predicts cardiovascular mortality in subjects &gt;70 years of age. Arterioscler Thromb Vasc Biol 2001; 21: 2046–2050.

    Article  CAS  PubMed  Google Scholar 

  2. Blacher J, Safar ME, Guerin AP, Pannier B, Marchais SJ, London GM : Aortic pulse wave velocity index and mortality in end-stage renal disease. Kidney Int 2003; 63: 1852–1860.

    Article  PubMed  Google Scholar 

  3. Blacher J, Guerin AP, Pannier B, Marchais SJ, Safar ME, London GM : Impact of aortic stiffness on survival in end-stage renal disease. Circulation 1999; 99: 2434–2439.

    Article  CAS  PubMed  Google Scholar 

  4. Safar ME, Blacher J, Pannier B, et al: Central pulse pressure and mortality in end-stage renal disease. Hypertension 2002; 39: 735–738.

    Article  CAS  PubMed  Google Scholar 

  5. Laurent S, Boutouyrie P, Asmar R, et al: Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 2001; 37: 1236–1241.

    Article  CAS  PubMed  Google Scholar 

  6. Boutouyrie P, Tropeano AI, Asmar R, et al: Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension 2002; 39: 10–15.

    Article  CAS  PubMed  Google Scholar 

  7. Shoji T, Emoto M, Shinohara K, et al: Diabetes mellitus, aortic stiffness, and cardiovascular mortality in end-stage renal disease. J Am Soc Nephrol 2001; 12: 2117–2124.

    CAS  PubMed  Google Scholar 

  8. Cruickshank K, Riste L, Anderson SG, Wright JS, Dunn G, Gosling RG : Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation 2002; 106: 2085–2090.

    Article  PubMed  Google Scholar 

  9. Mattace-Raso FUS, van der Cammen TJM, Hofman A, et al: Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation 2006; 113: 657–663.

    Article  PubMed  Google Scholar 

  10. Kullo IJ, Bielak LF, Turner ST, Sheedy PF, Peyser PA : Aortic pulse wave velocity is associated with the presence and quantity of coronary artery calcium: a community-based study. Hypertension 2006; 47: 174–179.

    Article  CAS  PubMed  Google Scholar 

  11. Covic A, Haydar AA, Bhamra-Ariza P, Gusbeth-Tatomir P, Goldsmith DJ : Aortic pulse wave velocity and arterial wave reflections predict the extent and severity of coronary artery disease in chronic kidney disease patients. J Nephrol 2005; 18: 388–396.

    CAS  PubMed  Google Scholar 

  12. Khoshdel AR, Thakkinstian A, Carney SL, Attia J : Estimation of an age-specific reference interval for pulse wave velocity: a meta-analysis. J Hypertens 2006; 24: 1231–1237.

    Article  CAS  PubMed  Google Scholar 

  13. American Diabetes Association : Diagnosis and classification of diabetes mellitus. Diabetes Care 2006; 29 ( Suppl 1): S43–S48.

  14. Van Bortel L, Duprez D, Starmans-Kool MJ, et al: Clinical applications of arterial stiffness, Task Force III: recommendations for user procedures. Am J Hypertens 2002; 15: 445–452.

    Article  PubMed  Google Scholar 

  15. Asmar R, Benetos A, Topouchian J : Assessment of arterial distensibility by automatic pulse wave velocity measurement. Validation and clinical application studies. Hypertension 1995; 26: 485–490.

    Article  CAS  PubMed  Google Scholar 

  16. Lim HE, Park CG, Shin SH, Ahn JC, Seo HS, Oh DJ : Aortic pulse wave velocity as an independent marker of coronary artery disease. Blood Pressure 2004; 13: 369–375.

    Article  PubMed  Google Scholar 

  17. Asmar R : Pulse wave velocity. Principles and measurements, in Asmar R ( ed): Arterial Stiffness and Pulse Wave Velocity: Clinical Applications. Paris, Elsevier, 1999, pp 25–55.

    Google Scholar 

  18. European Society of Hypertension–European Society of Cardiology Guidelines Committee : 2003 European Society of Hypertension–European Society of Cardiology guidelines for the management of arterial hypertension. J Hypertens 2003; 21: 1011–1053.

  19. Park SH, Goo JM, Jo CH : Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean J Radiol 2004; 5: 11–18.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Matsui Y, Kario K, Ishikawa J, Eguchi K, Hoshide S, Shimada K : Reproducibility of arterial stiffness indices (pulse wave velocity and augmentation index) simultaneously assessed by automated pulse wave analysis and their associated risk factors in essential hypertensive patients. Hypertens Res 2004; 27: 851–857.

    Article  PubMed  Google Scholar 

  21. Munakata M, Sakuraba J, Tayama J, et al: Higher brachial-ankle pulse wave velocity is associated with more advanced carotid atherosclerosis in end-stage renal disease. Hypertens Res 2005; 28: 9–14.

    Article  PubMed  Google Scholar 

  22. Kobayashi K, Akishita M, Yu W, Hashimoto M, Ohni M, Toba K : Interrelationship between non-invasive measurements of atherosclerosis: flow-mediated dilation of brachial artery, carotid intima-media thickness and pulse wave velocity. Atherosclerosis 2004; 173: 13–18.

    Article  CAS  PubMed  Google Scholar 

  23. Munakata M, Nunokawa T, Yoshinaga K, Toyota T : Brachial-ankle pulse wave velocity is an independent risk factor for microalbuminuria in patients with essential hypertension—a Japanese Trial on the Prognostic Implication of Pulse Wave Velocity (J-TOPP). Hypertens Res 2006; 29: 515–521.

    Article  PubMed  Google Scholar 

  24. Nakamura Y, Makino H : Brachial-ankle pulse wave velocity and microalbuminuria. Hypertens Res 2006; 29: 469–470.

    Article  PubMed  Google Scholar 

  25. Imanishi R, Seto S, Toda G, et al: High brachial-ankle pulse wave velocity is an independent predictor of the presence of coronary artery disease in men. Hypertens Res 2004; 27: 71–78.

    Article  PubMed  Google Scholar 

  26. Kita T, Suzuki Y, Eto T, Kitamura K : Long-term anti-hypertensive therapy with benidipine improves arterial stiffness over blood pressure lowering. Hypertens Res 2005; 28: 959–964.

    Article  CAS  PubMed  Google Scholar 

  27. Matsui Y, Kario K, Ishikawa J, Hoshide S, Eguchi K, Shimada K : Smoking and antihypertensive medication: interaction between blood pressure reduction and arterial stiffness. Hypertens Res 2005; 28: 631–638.

    Article  PubMed  Google Scholar 

  28. Nakamura T, Fujii S, Hoshino J, et al: Selective angiotensin receptor antagonism with valsartan decreases arterial stiffness independently of blood pressure lowering in hypertensive patients. Hypertens Res 2005; 28: 937–943.

    Article  CAS  PubMed  Google Scholar 

  29. Laurent S, Cockcroft J, Van Bortel L, et al: Expert consensus document on arterial stiffness: methodogical issues and clinical applications. Eur Heart J 2006; 27: 2588–2605.

    Article  PubMed  Google Scholar 

  30. Munakata M, Nagasaki A, Nunokawa T, et al: Effects of valsartan and nifedipine coat-core on systemic arterial stiffness in hypertensive patients. Am J Hypertens 2004; 17: 1050–1055.

    Article  CAS  PubMed  Google Scholar 

  31. Tayama J, Munakata M, Yoshinaga K, Toyota T : Higher plasma homocysteine concentration is associated with more advanced systemic arterial stiffness and greater blood pressure response to stress in hypertensive patients. Hypertens Res 2006; 29: 403–409.

    Article  CAS  PubMed  Google Scholar 

  32. Munakata M, Ito N, Nunokawa T, Yoshinaga K, et al: Utility of automated brachial ankle pulse wave velocity measurements in hypertensive patients. Am J Hypertens 2003; 16: 653–657.

    Article  PubMed  Google Scholar 

  33. Yamashina A, Tomiyama H, Takeda K, et al: Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens Res 2002; 25: 359–364.

    Article  PubMed  Google Scholar 

  34. Latham RD, Westerhof N, Sipkema P, Rubal BJ, Reuderink P, Murgo JP : Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures. Circulation 1985; 72: 1257–1269.

    Article  CAS  PubMed  Google Scholar 

  35. Izzo JL, Shykoff BE : Arterial stiffness: clinical relevance, measurement, and treatment. Rev Cardiovasc Med 2001; 2: 29–40.

    PubMed  Google Scholar 

  36. Lakatta EG, Levy D : Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease. Circulation 2003; 107: 139–146.

    Article  PubMed  Google Scholar 

  37. Lakatta EG, Levy D : Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation 2003; 107: 346–354.

    Article  PubMed  Google Scholar 

  38. Paini A, Boutouyrie P, Calvet D, Tropeano AI, Laloux B, Laurent S : Carotid and aortic stiffness: determinants of discrepancies. Hypertension 2006; 47: 371–376.

    Article  CAS  PubMed  Google Scholar 

  39. Pannier B, Guérin AP, Marchais SJ, Safar ME, London GM : Stiffness of capacitive and conduit arteries: prognostic significance for end-stage renal disease patients. Hypertension 2005; 45: 592–596.

    Article  CAS  PubMed  Google Scholar 

  40. Karamanoglu M : Errors in estimating propagation distances in pulse wave velocity. Hypertension 2003; 41: e8.

    Article  CAS  PubMed  Google Scholar 

  41. Jankowski P, Kawecka-Jaszcz K, Bryniarski L, et al: Fractional diastolic and systolic pressure in the ascending aorta are related to the extent of coronary artery disease. Am J Hypertens 2004; 17: 641.

    Article  PubMed  Google Scholar 

  42. Nakayama Y, Tsumura K, Yamashita N, Yoshimaru K, Hayashi T : Pulsatility of ascending aortic pressure waveform is a powerful predictor of restenosis after percutaneous transluminal coronary angioplasty. Circulation 2000; 101: 470–472.

    Article  CAS  PubMed  Google Scholar 

  43. Mackenzie IS, Wilkinson IB, Cockroft JR : Assessment of arterial stiffness in clinical practice. QJM 2002; 95: 67–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Cardiac and Vascular Diseases, Jagiellonian University, Collegium Medicum, Kraków, Poland

    Piotr Podolec, Grzegorz Kopeć, Piotr Wilkołek, Marek Krochin, Paweł Rubiś & Wiesława Tracz

  2. Department of Hemodynamics and Angiocardiography, Jagiellonian University, Collegium Medicum, Kraków, Poland

    Jakub Podolec & Krzysztof Żmudka

  3. Department of Internal Medicine and Gerontology, Jagiellonian University, Collegium Medicum, Kraków, Poland

    Marcin Cwynar & Tomasz Grodzicki

Authors
  1. Piotr Podolec
    View author publications

    Search author on:PubMed Google Scholar

  2. Grzegorz Kopeć
    View author publications

    Search author on:PubMed Google Scholar

  3. Jakub Podolec
    View author publications

    Search author on:PubMed Google Scholar

  4. Piotr Wilkołek
    View author publications

    Search author on:PubMed Google Scholar

  5. Marek Krochin
    View author publications

    Search author on:PubMed Google Scholar

  6. Paweł Rubiś
    View author publications

    Search author on:PubMed Google Scholar

  7. Marcin Cwynar
    View author publications

    Search author on:PubMed Google Scholar

  8. Tomasz Grodzicki
    View author publications

    Search author on:PubMed Google Scholar

  9. Krzysztof Żmudka
    View author publications

    Search author on:PubMed Google Scholar

  10. Wiesława Tracz
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Piotr Wilkołek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podolec, P., Kopeć, G., Podolec, J. et al. Aortic Pulse Wave Velocity and Carotid-Femoral Pulse Wave Velocity: Similarities and Discrepancies. Hypertens Res 30, 1151–1158 (2007). https://doi.org/10.1291/hypres.30.1151

Download citation

  • Received: 13 March 2007

  • Accepted: 03 July 2007

  • Issue date: 01 December 2007

  • DOI: https://doi.org/10.1291/hypres.30.1151

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • aortic pulse wave velocity
  • carotid-femoral pulse wave velocity
  • stiffness
  • coronary artery disease

This article is cited by

  • Improved pressure contour analysis for estimating cardiac stroke volume using pulse wave velocity measurement

    • Shun Kamoi
    • Christopher Pretty
    • J. Geoffrey Chase

    BioMedical Engineering OnLine (2017)

  • Novel Methods for Pulse Wave Velocity Measurement

    • Tânia Pereira
    • Carlos Correia
    • João Cardoso

    Journal of Medical and Biological Engineering (2015)

  • Validated methods for assessment of subclinical atherosclerosis in rheumatology

    • György Kerekes
    • Pál Soltész
    • Zoltán Szekanecz

    Nature Reviews Rheumatology (2012)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited