Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Angiotensin II–Induced Regulation of the Expression and Localization of Iron Metabolism–Related Genes in the Rat Kidney
Download PDF
Download PDF
  • Original Article
  • Published: 01 February 2007

Angiotensin II–Induced Regulation of the Expression and Localization of Iron Metabolism–Related Genes in the Rat Kidney

  • Nobukazu Ishizaka1,
  • Kan Saito1,
  • Kyoko Furuta1,
  • Gen Matsuzaki1,
  • Kazuhiko Koike2,
  • Eisei Noiri3 &
  • …
  • Ryozo Nagai1 

Hypertension Research volume 30, pages 195–202 (2007)Cite this article

  • 1609 Accesses

  • Metrics details

Abstract

Due to recent discoveries of novel genes involved in iron metabolism, our understanding of the molecular mechanisms underlying iron metabolism has dramatically increased. We have previously shown that the administration of angiotensin II alters iron homeostasis in the rat kidney, which may in turn aggravate angiotensin II–induced renal damage. Here we have investigated the effect of angiotensin II administration on the localization and expression of transferrin receptor (TfR), divalent metal transporter 1 (DMT1), ferroportin 1 (FPN), and hepcidin mRNA in the rat kidney. Weak expression of TfR, DMT1, FPN, and hepcidin mRNA was observed in the kidneys of control rats. In contrast, after 7 days of angiotensin II infusion by osmotic minipump, the expression of these mRNAs was more widely distributed. Staining of serial sections revealed that some, but not all, of the renal tubular cells positive for these genes contained iron deposits in the kidney of angiotensin II–infused animals. Real-time polymerase chain reaction (PCR) showed that the mRNA expression of TfR, iron-responsive element–negative DMT1, FPN, and hepcidin mRNA increased ∼1.9-fold, ∼1.7-fold, ∼2.3-fold, and ∼4.7-fold, respectively, after angiotensin II infusion as compared with that of untreated controls, and that these increases could be suppressed by the concomitant administration of losartan. Our data demonstrate that these genes were unequivocally expressed in the kidney and could be regulated by angiotensin II infusion. The relative contribution, if any, of these genes to renal and/or whole-body iron homeostasis in various disorders in which the renin angiotensin system is activated should be investigated in future studies.

Similar content being viewed by others

Angiotensin II type 2 receptor activation preserves megalin in the kidney and prevents proteinuria in high salt diet fed rats

Article Open access 15 March 2023

Angiotensin II type-1 receptor-associated protein interacts with transferrin receptor-1 and promotes its internalization

Article Open access 17 October 2022

Vegfa promoter gene hypermethylation at HIF1α binding site is an early contributor to CKD progression after renal ischemia

Article Open access 22 April 2021

Article PDF

References

  1. Gunshin H, Mackenzie B, Berger UV, et al: Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 1997; 388: 482–488.

    Article  CAS  Google Scholar 

  2. Fleming MD, Trenor CC 3rd, Su MA, et al: Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet 1997; 16: 383–386.

    Article  CAS  Google Scholar 

  3. Fleming MD, Romano MA, Su MA, Garrick LM, Garrick MD, Andrews NC : Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci U S A 1998; 95: 1148–1153.

    Article  CAS  Google Scholar 

  4. McKie AT, Marciani P, Rolfs A, et al: A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 2000; 5: 299–309.

    Article  CAS  Google Scholar 

  5. Donovan A, Brownlie A, Zhou Y, et al: Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 2000; 403: 776–781.

    Article  CAS  Google Scholar 

  6. Park CH, Valore EV, Waring AJ, Ganz T : Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 2001; 276: 7806–7810.

    Article  CAS  Google Scholar 

  7. Nemeth E, Tuttle MS, Powelson J, et al: Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004; 306: 2090–2093.

    Article  CAS  Google Scholar 

  8. Delaby C, Pilard N, Goncalves AS, Beaumont C, Canonne-Hergaux F : Presence of the iron exporter ferroportin at the plasma membrane of macrophages is enhanced by iron loading and down-regulated by hepcidin. Blood 2005; 106: 3979–3984.

    Article  CAS  Google Scholar 

  9. Lu JP, Hayashi K, Awai M : Transferrin receptor expression in normal, iron-deficient and iron-overloaded rats. Acta Pathol Jpn 1989; 39: 759–764.

    CAS  PubMed  Google Scholar 

  10. Ward DT, Hamilton K, Burnand R, Smith CP, Tomlinson DR, Riccardi D : Altered expression of iron transport proteins in streptozotocin-induced diabetic rat kidney. Biochim Biophys Acta 2005; 1740: 79–84.

    Article  CAS  Google Scholar 

  11. Ferguson CJ, Wareing M, Ward DT, Green R, Smith CP, Riccardi D : Cellular localization of divalent metal transporter DMT-1 in rat kidney. Am J Physiol Renal Physiol 2001; 280: F803–F814.

    Article  CAS  Google Scholar 

  12. Wareing M, Ferguson CJ, Delannoy M, et al: Altered dietary iron intake is a strong modulator of renal DMT1 expression. Am J Physiol Renal Physiol 2003; 285: F1050–F1059.

    Article  CAS  Google Scholar 

  13. Chung J, Prohaska JR, Wessling-Resnick M : Ferroportin-1 is not upregulated in copper-deficient mice. J Nutr 2004; 134: 517–521.

    Article  CAS  Google Scholar 

  14. Kulaksiz H, Theilig F, Bachmann S, et al: The iron-regulatory peptide hormone hepcidin: expression and cellular localization in the mammalian kidney. J Endocrinol 2005; 184: 361–370.

    Article  CAS  Google Scholar 

  15. Ishizaka N, Aizawa T, Yamazaki I, et al: Abnormal iron deposition in renal cells in the rat with chronic angiotensin II administration. Lab Invest 2002; 82: 87–96.

    Article  CAS  Google Scholar 

  16. Saito K, Ishizaka N, Aizawa T, et al: Role of aberrant iron homeostasis in the upregulation of transforming growth factor-beta1 in the kidney of angiotensin II–induced hypertensive rats. Hypertens Res 2004; 27: 599–607.

    Article  CAS  Google Scholar 

  17. Saito K, Ishizaka N, Hara M, et al: Lipid accumulation and transforming growth factor-beta upregulation in the kidneys of rats administered angiotensin II. Hypertension 2005; 46: 1180–1185.

    Article  CAS  Google Scholar 

  18. Aizawa T, Ishizaka N, Taguchi J, et al: Heme oxygenase-1 is upregulated in the kidney of angiotensin II–induced hypertensive rats: possible role in renoprotection. Hypertension 2000; 35: 800–806.

    Article  CAS  Google Scholar 

  19. Ishizaka N, Saito K, Mori I, Matsuzaki G, Ohno M, Nagai R : Iron chelation suppresses ferritin upregulation and attenuates vascular dysfunction in the aorta of angiotensin II–infused rats. Arterioscler Thromb Vasc Biol 2005; 25: 2282–2288.

    Article  CAS  Google Scholar 

  20. Andrews NC : Iron homeostasis: insights from genetics and animal models. Nat Rev Genet 2000; 1: 208–217.

    Article  CAS  Google Scholar 

  21. Moura IC, Centelles MN, Arcos-Fajardo M, et al: Identification of the transferrin receptor as a novel immunoglobulin (Ig)A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J Exp Med 2001; 194: 417–425.

    Article  CAS  Google Scholar 

  22. Moura IC, Arcos-Fajardo M, Gdoura A, et al: Engagement of transferrin receptor by polymeric IgA1: evidence for a positive feedback loop involving increased receptor expression and mesangial cell proliferation in IgA nephropathy. J Am Soc Nephrol 2005; 16: 2667–2676.

    Article  CAS  Google Scholar 

  23. Canonne-Hergaux F, Gros P : Expression of the iron transporter DMT1 in kidney from normal and anemic mk mice. Kidney Int 2002; 62: 147–156.

    Article  CAS  Google Scholar 

  24. Hubert N, Hentze MW : Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function. Proc Natl Acad Sci U S A 2002; 99: 12345–12350.

    Article  CAS  Google Scholar 

  25. Nankivell BJ, Tay YC, Boadle RA, Harris DC : Lysosomal iron accumulation in diabetic nephropathy. Ren Fail 1994; 16: 367–381.

    Article  CAS  Google Scholar 

  26. Njajou OT, Vaessen N, Joosse M, et al: A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis. Nat Genet 2001; 28: 213–214.

    Article  CAS  Google Scholar 

  27. Montosi G, Donovan A, Totaro A, et al: Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene. J Clin Invest 2001; 108: 619–623.

    Article  CAS  Google Scholar 

  28. Pietrangelo A : The ferroportin disease. Blood Cells Mol Dis 2004; 32: 131–138.

    Article  CAS  Google Scholar 

  29. Corradini E, Montosi G, Ferrara F, et al: Lack of enterocyte iron accumulation in the ferroportin disease. Blood Cells Mol Dis 2005; 35: 315–318.

    Article  CAS  Google Scholar 

  30. Ganz T : Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 2003; 102: 783–788.

    Article  CAS  Google Scholar 

  31. Piperno A, Trombini P, Gelosa M, et al: Increased serum ferritin is common in men with essential hypertension. J Hypertens 2002; 20: 1513–1518.

    Article  CAS  Google Scholar 

  32. Davis RJ, Corvera S, Czech MP : Insulin stimulates cellular iron uptake and causes the redistribution of intracellular transferrin receptors to the plasma membrane. J Biol Chem 1986; 261: 8708–8711.

    CAS  PubMed  Google Scholar 

  33. Kanauchi M, Akai Y, Hashimoto T : Transferrinuria in type 2 diabetic patients with early nephropathy and tubulointerstitial injury. Eur J Intern Med 2002; 13: 190–193.

    Article  CAS  Google Scholar 

  34. Zeller A, Haehner T, Battegay E, Martina B : Diagnostic significance of transferrinuria and albumin-specific dipstick testing in primary care patients with elevated office blood pressure. J Hum Hypertens 2005; 19: 205–209.

    Article  CAS  Google Scholar 

  35. Murayama S, Hirano T, Sakaue T, Okada K, Ikejiri R, Adachi M : Low-dose candesartan cilexetil prevents early kidney damage in type 2 diabetic patients with mildly elevated blood pressure. Hypertens Res 2003; 26: 453–458.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan

    Nobukazu Ishizaka, Kan Saito, Kyoko Furuta, Gen Matsuzaki & Ryozo Nagai

  2. Department of Infectious Diseases, University of Tokyo Graduate School of Medicine, Tokyo, Japan

    Kazuhiko Koike

  3. Department of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan

    Eisei Noiri

Authors
  1. Nobukazu Ishizaka
    View author publications

    Search author on:PubMed Google Scholar

  2. Kan Saito
    View author publications

    Search author on:PubMed Google Scholar

  3. Kyoko Furuta
    View author publications

    Search author on:PubMed Google Scholar

  4. Gen Matsuzaki
    View author publications

    Search author on:PubMed Google Scholar

  5. Kazuhiko Koike
    View author publications

    Search author on:PubMed Google Scholar

  6. Eisei Noiri
    View author publications

    Search author on:PubMed Google Scholar

  7. Ryozo Nagai
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Nobukazu Ishizaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishizaka, N., Saito, K., Furuta, K. et al. Angiotensin II–Induced Regulation of the Expression and Localization of Iron Metabolism–Related Genes in the Rat Kidney. Hypertens Res 30, 195–202 (2007). https://doi.org/10.1291/hypres.30.195

Download citation

  • Received: 21 July 2006

  • Accepted: 28 September 2006

  • Issue date: 01 February 2007

  • DOI: https://doi.org/10.1291/hypres.30.195

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • angiotensin II
  • iron metabolism
  • hypertension
  • gene regulation

This article is cited by

  • Iron suppresses erythropoietin expression via oxidative stress-dependent hypoxia-inducible factor-2 alpha inactivation

    • Keisuke Oshima
    • Yasumasa Ikeda
    • Toshiaki Tamaki

    Laboratory Investigation (2017)

  • Angiotensin II alters the expression of duodenal iron transporters, hepatic hepcidin, and body iron distribution in mice

    • Soichiro Tajima
    • Yasumasa Ikeda
    • Toshiaki Tamaki

    European Journal of Nutrition (2015)

  • Angiotensin II Inhibits Iron Uptake and Release in Cultured Neurons

    • Yong Liu
    • Suna Huang
    • Zhong-ming Qian

    Neurochemical Research (2014)

  • Ovine uterine space restriction alters placental transferrin receptor and fetal iron status during late pregnancy

    • Mary Y. Sun
    • Jason M. Habeck
    • Pamela J. Kling

    Pediatric Research (2013)

  • Vision preservation during retinal inflammation by anthocyanin-rich bilberry extract: cellular and molecular mechanism

    • Seiji Miyake
    • Noriko Takahashi
    • Yoko Ozawa

    Laboratory Investigation (2012)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited