Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Spironolactone Modulates Expressions of Cardiac Mineralocorticoid Receptor and 11β-Hydroxysteroid Dehydrogenase 2 and Prevents Ventricular Remodeling in Post-Infarct Rat Hearts
Download PDF
Download PDF
  • Original Article
  • Published: 01 May 2007

Spironolactone Modulates Expressions of Cardiac Mineralocorticoid Receptor and 11β-Hydroxysteroid Dehydrogenase 2 and Prevents Ventricular Remodeling in Post-Infarct Rat Hearts

  • Mitsuo Takeda1,
  • Tetsuya Tatsumi1,
  • Shinsaku Matsunaga1,
  • Hironori Hayashi1,
  • Masaki Kimata1,
  • Shoken Honsho1,
  • Susumu Nishikawa1,
  • Akiko Mano1,
  • Jun Shiraishi1,
  • Hiroyuki Yamada1,
  • Tomosaburo Takahashi1,
  • Satoaki Matoba1,
  • Miyuki Kobara2 &
  • …
  • Hiroaki Matsubara1 

Hypertension Research volume 30, pages 427–437 (2007)Cite this article

  • 2113 Accesses

  • Metrics details

Abstract

Aldosterone antagonists have been reported to prevent ventricular remodeling after myocardial infarction (MI) via their action to extracellular matrix (ECM). However, it remains largely unknown whether aldosterone antagonists attenuate myocyte loss in the remodeling process. The present study examined whether spironolactone prevents myocyte apoptosis and improves post-infarct ventricular remodeling in rats. MI was achieved by permanent occlusion of the left coronary artery. Administration of spironolactone (100 mg/kg/day) was started immediately after MI. Sprague-Dawley rats were divided into four groups: 1) sham, 2) spironolactone-treated sham, 3) untreated MI, 4) spironolactone-treated MI. Echocardiographic parameters (left ventricular [LV] diastolic dimension [LVDd], fractional shortening [%FS]), hemodynamic parameters (LV systolic pressure [LVSP], LV end-diastolic pressure [LVEDP], dP/dtmax and dP/dtmin) and collagen accumulation quantitated by Masson's Trichrome staining were significantly improved in the spironolactone-treated MI group on the 14th day, compared with the untreated MI group. Moreover, the percentage of apoptotic myocytes evaluated by terminal deoxynucleotide transferase–mediated dUTP nick end labeling (TUNEL) assay was significantly lower in the spironolactone-treated MI group on the 2nd (3.54% vs. 5.79% in untreated MI group), 7th (0.65% vs. 1.37% in untreated MI group) and 14th days (0.11% vs. 0.16% in untreated MI group). Real time reverse transcription–polymerase chain reaction (RT-PCR) analysis showed that the expression of mineralocorticoid receptor (MR) mRNA and that of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) mRNA, which is known to confer aldosterone selectivity on MR, were upregulated in the untreated MI group, and that spironolactone significantly suppressed the expression of these genes. Moreover, spironolactone significantly inhibited aldosterone-induced apoptosis in cultured rat cardiac myocytes in a dose-dependent fashion. Our study demonstrates that, in addition to their effect on ECM, aldosterone antagonists inhibit myocyte apoptosis and prevent post-infarct ventricular remodeling by modulating the expression levels of MR and 11β-HSD2, which are enhanced in the remodeling heart.

Similar content being viewed by others

Suppressing the expression of steroidogenic acute regulatory protein (StAR) in the myocardium by spironolactone contributes to the improvement of right ventricular remodeling in pulmonary arterial hypertension

Article 04 October 2024

Cardiac protection by pirfenidone after myocardial infarction: a bioinformatic analysis

Article Open access 18 March 2022

Long noncoding Mirt2 reduces apoptosis to alleviate myocardial infarction through regulation of the miR-764/PDK1 axis

Article 17 November 2020

Article PDF

References

  1. Pfeffer MA : Left ventricular remodeling after acute myocardial infarction. Annu Rev Med 1995; 46: 455–466.

    Article  CAS  Google Scholar 

  2. Tatsumi T, Shiraishi J, Keira N, et al: Intracellular ATP is required for mitochondrial apoptotic pathways in isolated hypoxic rat cardiac myocytes. Cardiovasc Res 2003; 52: 428–440.

    Article  Google Scholar 

  3. Fliss H, Gattinger D : Apoptosis in ischemic and reperfused rat myocardium. Circ Res 1996; 79: 949–956.

    Article  CAS  Google Scholar 

  4. Kajstura J, Cheng W, Reiss K, et al: Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 1996; 74: 86–107.

    CAS  Google Scholar 

  5. Cheng W, Kajstura J, Nitahara JA, et al: Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res 1996; 226: 316–327.

    Article  CAS  Google Scholar 

  6. Olivetti G, Quaini F, Sala R, et al: Acute myocardial infarction in humans is associated with the activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 1996; 28: 2005–2016.

    Article  CAS  Google Scholar 

  7. Beltrami CA, Finato N, Rocco M, et al: Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 1994; 89: 151–163.

    Article  CAS  Google Scholar 

  8. Olivetti G, Abbi R, Quaini F, et al: Apoptosis in the failing human heart. N Eng J Med 1997; 336: 1131–1141.

    Article  CAS  Google Scholar 

  9. Saraste A, Pulkki K, Kallajoki M, et al: Cardiomyocyte apoptosis and progression of heart failure to transplantation. Eur J Clin Invest 1999; 29: 380–386.

    Article  CAS  Google Scholar 

  10. Packer M : The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol 1992; 20: 248–254.

    Article  CAS  Google Scholar 

  11. Sato A, Saruta T : Aldosterone-induced organ damage: plasma aldosterone level and inappropriate salt status. Hypertens Res 2004; 27: 303–310.

    Article  CAS  Google Scholar 

  12. Pitt B, Zannad F, Remme WJ, et al: The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 1999; 341: 709–717.

    Article  CAS  Google Scholar 

  13. Pitt B, Remme W, Zannad F, et al, Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study Investigators : Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003; 348: 1309–1321.

    Article  CAS  Google Scholar 

  14. Mizuno Y, Yoshimura M, Yasue H, et al: Aldosterone production is activated in the failing ventricles in human. Circulation 2001; 103: 72–77.

    Article  CAS  Google Scholar 

  15. Yamamoto N, Yasue H, Mizuno Y, et al: Aldosterone is produced from ventricles in patients with essential hypertension. Hypertension 2002; 39: 958–962.

    Article  CAS  Google Scholar 

  16. Silvestre JS, Robert V, Heymes C, et al: Myocardial production of aldosterone and corticosterone in the rat: physiological regulation. J Biol Chem 1998; 273: 4883–4891.

    Article  CAS  Google Scholar 

  17. Struthers AD, MacDonald TM : Review of aldosterone-and angiotensin II–induced target organ damage and prevention. Cardiovasc Res 2004; 61: 663–670.

    Article  CAS  Google Scholar 

  18. Funder JW : Glucocorticoid and mineralocorticoid receptors: biology and clinical relevance. Annu Rev Med 1997; 48: 231–240.

    Article  CAS  Google Scholar 

  19. Slight SH, Ganjam VK, Gomez-Sanchez CE, Zhou MY, Weber KT : High affinity NAD+-dependent 11β-hydroxysteroid dehydrogenase in the human heart. J Mol Cell Cardiol 1996; 28: 781–787.

    Article  CAS  Google Scholar 

  20. Mano A, Tatsumi T, Shiraishi J, et al: Aldosterone directly induces myocyte apoptosis through calcineurin-dependent pathways. Circulation 2004; 110: 317–323.

    Article  CAS  Google Scholar 

  21. Kobara M, Tatsumi T, Kambayashi D, et al: Effect of ACE inhibition on myocardial apoptosis in an ischemia-reperfusion rat heart model. J Cardiovasc Pharmacol 2003; 41: 880–889.

    Article  CAS  Google Scholar 

  22. Veliotes DGA, Woodiwiss AJ, Deftereos DAJ, Gray D, Osadchii O, Norton GR : Aldosterone receptor blockade prevents the transition to cardiac pump dysfunction induced by β-adrenoreceptor activation. Hypertension 2005; 45: 914–920.

    Article  CAS  Google Scholar 

  23. Bäcklund T, Palojoki E, Saraste A, et al: Effect of vasopeptide inhibitor omapatrilat on cardiomyocyte apoptosis and ventricular remodeling in rat myocardial infarction. Cardiovasc Res 2003; 57: 727–737.

    Article  Google Scholar 

  24. Delyani JA, Robinson EL, Rudolph AE : Effect of a selective aldosterone receptor antagonist in myocardial infarction. Am J Physiol 2001; 50: H647–H654.

    Google Scholar 

  25. Brilla CG, Pick R, Tan LB, Janicki JS, Weber KT : Remodeling of the rat right and left ventricles in experimental hypertension. Circ Res 1990; 67: 1355–1364.

    Article  CAS  Google Scholar 

  26. Roussoulieres AL, Raisky O, Chalabreysse L, et al: Identification and characterization of two genes (MIP-1β, VE-CADHERIN) implicated in acute rejection in human heart transplantation: use of murine models in tandem with cDNA arrays. Circulation 2005; 111: 2636–2644.

    Article  CAS  Google Scholar 

  27. Delcayre C, Swynghedauw B : Molecular mechanisms of myocardial remodeling. The role of aldosterone. J Mol Cell Cardiol 2002; 34: 1577–1584.

    Article  CAS  Google Scholar 

  28. Solomon SD, Pfeffer MA : Aldosterone antagonism and myocardial infarction. From animals to man and back. J Am Coll Cardiol 2003; 42: 1674–1676.

    Article  Google Scholar 

  29. Zannad F, Alla F, Dousset B, Perez A, Pitt B, RALES Investigators : Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the Randomized Aldactone Evaluation Study (RALES). Circulation 2000; 102: 2700–2706.

    Article  CAS  Google Scholar 

  30. Suzuki G, Morita H, Mishima T, et al: Effects of long-term monotherapy with eplerenone, a novel aldosterone blocker, on progression of left ventricular dysfunction and remodeling in dogs with heart failure. Circulation 2002; 106: 2967–2972.

    Article  CAS  Google Scholar 

  31. Fraccarollo D, Galuppo P, Hildemann S, Christ M, Ertl G, Bauersachs J : Additive improvement of left ventricular remodeling and neurohormonal activation by aldosterone receptor blockade with eplerenone and ACE inhibition in rats with myocardial infarction. J Am Coll Cardiol 2003; 42: 1666–1673.

    Article  CAS  Google Scholar 

  32. Hayakawa K, Takemura G, Kanoh M, et al: Inhibition of granulation tissue cell apoptosis during the subacute stage of myocardial infarction improves cardiac remodeling and dysfunction at the chronic stage. Circulation 2003; 108: 104–109.

    Article  Google Scholar 

  33. Wencker D, Chandra M, Nguyen K, et al: A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 2003; 111: 1497–1504.

    Article  CAS  Google Scholar 

  34. Foo RSY, Mani K, Kitsis RN : Death begets failure in the heart. J Clin Invest 2005; 115: 565–571.

    Article  CAS  Google Scholar 

  35. Cesselli D, Jakoniuk I, Barlucchi L, et al: Oxidative stress–mediated cardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. Circ Res 2001; 89: 279–286.

    Article  CAS  Google Scholar 

  36. Chandrashekhar Y, Sen S, Anway R, Shuros A, Anand I : Long-term caspase inhibition ameliorates apoptosis, reduces myocardial troponin-I cleavage, protects left ventricular function, and attenuates remodeling in rats with myocardial infarction. J Am Coll Cardiol 2004; 43: 295–301.

    Article  CAS  Google Scholar 

  37. Leri A, Claudio PP, Li Q, et al: Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin Invest 1998; 101: 1326–1342.

    Article  CAS  Google Scholar 

  38. de Gasparo M, Joss U, Ramjoue HP, et al: Three new epoxy-spironolactone derivatives: characterization in vivo and in vitro. J Pharmacol Exp Ther 1987; 240: 650–656.

    CAS  PubMed  Google Scholar 

  39. Silvestre JS, Heymes C, Oubenaissa A, et al: Activation of cardiac aldosterone production in rat myocardial infarction. Effect of angiotensin II receptor blockade and role in cardiac fibrosis. Circulation 1999; 99: 2694–2701.

    Article  CAS  Google Scholar 

  40. Katada J, Meguro T, Saito H, et al: Persistent cardiac aldosterone synthesis in angiotensin II type 1A receptor–knockout mice after myocardial infarction. Circulation 2005; 111: 2157–2164.

    Article  CAS  Google Scholar 

  41. Funder JW, Pearce PT, Smith R, Smith AI : Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 1988; 242: 986–989.

    Article  Google Scholar 

  42. Sheppard KE, Autelitano DJ : 11β-Hydroxysteroid dehydrogenase 1 transforms 11-dehydrocorticosterone into transcriptionally active glucocorticoid in neonatal rat heart. Endocrinology 2002; 143: 198–204.

    Article  CAS  Google Scholar 

  43. Lombes M, Oblin ME, Gasc JM, Baulieu EE, Farman N, Bonvalet JP : Immunohistochemical and biochemical evidence for a cardiovascular mineralocorticoid receptor. Circ Res 1992; 71: 503–510.

    Article  CAS  Google Scholar 

  44. Young M, Fullerton M, Dilley R, Funder J : Mineralocorticoids, hypertension, and cardiac fibrosis. J Clin Invest 1994; 93: 2578–2583.

    Article  CAS  Google Scholar 

  45. Sato A, Funder JW : High glucose stimulates aldosterone-induced hypertrophy via type 1 meneralocorticoid receptors in neonatal rat cardiomyocytes. Endocrinology 1996; 137: 4145–4153.

    Article  CAS  Google Scholar 

  46. Qin W, Rudolph AE, Bond BR, et al: Transgenic model of aldosterone-driven cardiac hypertrophy and heart failure. Circ Res 2003; 93: 69–76.

    Article  CAS  Google Scholar 

  47. Nagata K, Obata K, Xu J, et al: Mineralocorticoid receptor antagonism attenuates cardiac hypertrophy and failure in low-aldosterone hypertensive rats. Hypertension 2006; 47: 656–664.

    Article  CAS  Google Scholar 

  48. Konishi A, Tazawa C, Miki Y, et al: The possible roles of mineralocorticoid receptor and 11β-hydroxysteroid dehydrogenase type 2 in cardiac fibrosis in the spontaneously hypertensive rat. J Steroid Biochem Mol Biol 2003; 85: 439–442.

    Article  CAS  Google Scholar 

  49. Castren M, Trapp T, Berninger B, Castren E, Holsboer F : Transcriptional induction of rat mineralocorticoid receptor gene in neurones by corticosteroids. J Mol Endocrinol 1995; 14: 285–293.

    Article  CAS  Google Scholar 

  50. Lister K, Autelitano DJ, Jenkins A, Hannan RD, Sheppard KE : Cross talk between corticosteroids and alpha-adrenergic signalling augments cardiomyocyte hypertrophy: a possible role for SGK1. Cardiovasc Res 2006; 70: 555–565.

    Article  CAS  Google Scholar 

  51. Sun K, Yang K, Challis JR : Differential regulation of 11β-hydroxysteroid dehydrogenase type 1 and 2 by nitric oxide in cultured human placental trophoblast and chorionic cell preparation. Endocrinology 1997; 138: 4912–4920.

    Article  CAS  Google Scholar 

  52. Suzuki S, Tsubochi H, Ishibashi H, et al: Inflammatory mediators down-regulate 11β-hydroxysteroid dehydrogenase type 2 in a human lung epithelial cell line BEAS-2B and the rat lung. Tohoku J Exp Med 2005; 207: 293–301.

    Article  CAS  Google Scholar 

  53. Fukushima K, Funayama Y, Yonezawa H, et al: Aldosterone enhances 11β-hydroxysteroid dehydrogenase type 2 expression in colonic epithelial cells in vivo. Scand J Gastroenterol 2005; 40: 850–857.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kyoto, Japan

    Mitsuo Takeda, Tetsuya Tatsumi, Shinsaku Matsunaga, Hironori Hayashi, Masaki Kimata, Shoken Honsho, Susumu Nishikawa, Akiko Mano, Jun Shiraishi, Hiroyuki Yamada, Tomosaburo Takahashi, Satoaki Matoba & Hiroaki Matsubara

  2. Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan

    Miyuki Kobara

Authors
  1. Mitsuo Takeda
    View author publications

    Search author on:PubMed Google Scholar

  2. Tetsuya Tatsumi
    View author publications

    Search author on:PubMed Google Scholar

  3. Shinsaku Matsunaga
    View author publications

    Search author on:PubMed Google Scholar

  4. Hironori Hayashi
    View author publications

    Search author on:PubMed Google Scholar

  5. Masaki Kimata
    View author publications

    Search author on:PubMed Google Scholar

  6. Shoken Honsho
    View author publications

    Search author on:PubMed Google Scholar

  7. Susumu Nishikawa
    View author publications

    Search author on:PubMed Google Scholar

  8. Akiko Mano
    View author publications

    Search author on:PubMed Google Scholar

  9. Jun Shiraishi
    View author publications

    Search author on:PubMed Google Scholar

  10. Hiroyuki Yamada
    View author publications

    Search author on:PubMed Google Scholar

  11. Tomosaburo Takahashi
    View author publications

    Search author on:PubMed Google Scholar

  12. Satoaki Matoba
    View author publications

    Search author on:PubMed Google Scholar

  13. Miyuki Kobara
    View author publications

    Search author on:PubMed Google Scholar

  14. Hiroaki Matsubara
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Tetsuya Tatsumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeda, M., Tatsumi, T., Matsunaga, S. et al. Spironolactone Modulates Expressions of Cardiac Mineralocorticoid Receptor and 11β-Hydroxysteroid Dehydrogenase 2 and Prevents Ventricular Remodeling in Post-Infarct Rat Hearts. Hypertens Res 30, 427–437 (2007). https://doi.org/10.1291/hypres.30.427

Download citation

  • Received: 21 April 2006

  • Accepted: 20 December 2006

  • Issue date: 01 May 2007

  • DOI: https://doi.org/10.1291/hypres.30.427

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • aldosterone
  • apoptosis
  • heart failure
  • myocardial infarction
  • remodeling

This article is cited by

  • Aldosterone stimulation mediates cardiac metabolism remodeling via Sirt1/AMPK signaling in canine model

    • Guang-zhong Liu
    • Song Zhang
    • Yue Li

    Naunyn-Schmiedeberg's Archives of Pharmacology (2019)

  • Topical Mineralocorticoid Receptor Blockade Limits Glucocorticoid-Induced Epidermal Atrophy in Human Skin

    • Eve Maubec
    • Cédric Laouénan
    • Nicolette Farman

    Journal of Investigative Dermatology (2015)

  • Role of aldosterone on lung structural remodelling and right ventricular function in congestive heart failure

    • Andreanne Chabot
    • Bao Hua Jiang
    • Jocelyn Dupuis

    BMC Cardiovascular Disorders (2011)

  • Mineralocorticoid receptor activation and blockade: an emerging paradigm in chronic kidney disease

    • Jean-Philippe Bertocchio
    • David G. Warnock
    • Frederic Jaisser

    Kidney International (2011)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited