Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Association Study between Hypertension and A/G Polymorphism at Codon 637 of the Transporter Associated with Antigen Processing 1 Gene
Download PDF
Download PDF
  • Original Article
  • Published: 01 August 2007

Association Study between Hypertension and A/G Polymorphism at Codon 637 of the Transporter Associated with Antigen Processing 1 Gene

  • Chong Shen1,2,
  • Zhirong Guo3,
  • Ming Wu4,
  • Xiaoshu Hu4,
  • Guang Yang2,
  • Rongbin Yu1,
  • Hongbing Shen1,
  • Yaochu Xu1 &
  • …
  • Cailiang Yao1 

Hypertension Research volume 30, pages 683–690 (2007)Cite this article

  • 1015 Accesses

  • Metrics details

Abstract

To explore the effect of A/G polymorphisms at codon 637 of the transporter associated with antigen processing 1 (TAP1) gene on the risk of hypertension. A case-control study of epidemiology was conducted. The case group included 277 community-based patients (136 males and 141 females; mean age 58.7±12.1 years) diagnosed with hypertension, and the control group consisted of 227 healthy subjects (95 males and 132 females; mean age 51.29±12.16 years) from the same community. The A/G polymorphisms at codon 637 of the TAP1 gene was examined by the polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) method with genomic DNA. The effect of A/G polymorphisms at codon 637 of the TAP1 gene on hypertension was analyzed by using multivariate unconditional logistic regression models. The contribution of TAP1 637 A/G allele frequencies of the control group was consistent with that predicted by the Hardy-Weinberg equilibrium test (x2=230, p=0.632). There was a significant difference in the frequency of the A/G polymorphisms at codon 637 of the TAP1 gene between hypertensive patients (74.4/25.6%) and controls (82.4%/17.6%), x2=9.324, p=0.002. Genotype model (AA-AG-GG) analysis showed that there was a significant difference in the frequency of the recessive genotype between cases and controls (AA/AG vs. GG: odds ratio [OR]=3.046, 95% confidence interval [CI]=1.138–8.153) after adjustment for the covariates of age, serum total cholesterol, triglycerides, body mass index (BMI) and smoking. But there were no significant differences in the frequency of the genotype for the dominant model (AA vs. AG/GG: p=0.293) or additive model (AA vs. AG vs. GG: p=0.081) after adjustment. One-way ANOVA analysis showed that the systolic blood pressure, diastolic blood pressure, and BMI levels of the GG genotype were significantly higher than those of the AA or AG genotypes. In conclusion, our findings suggest that the A/G polymorphisms at codon 637 of the TAP1 gene contributes to the risk of hypertension, possibly via the increases in blood pressure and BMI.

Similar content being viewed by others

Effect of APOB polymorphism rs562338 (G/A) on serum proteome of coronary artery disease patients: a “proteogenomic” approach

Article Open access 23 November 2021

Associations of combined genetic and lifestyle risks with hypertension and home hypertension

Article Open access 24 June 2024

Identifying the predictive effectiveness of a genetic risk score for incident hypertension using machine learning methods among populations in rural China

Article 03 September 2021

Article PDF

References

  1. Lifton RP, Gharavi AG, Geller DS : Molecular mechanisms of human hypertension. Cell 2001; 104: 545–556.

    Article  CAS  PubMed  Google Scholar 

  2. Liu W, Zhao W, Chase GA : Genome scan meta-analysis for hypertension. Am J Hypertens 2004; 17: 1100–1106.

    Article  CAS  PubMed  Google Scholar 

  3. Benjafield AV, Wang WY, Speirs HJ, et al: Genome-wide scan for hypertension in Sydney Sibships: the GENIHUSS study. Am J Hypertens 2005; 18: 828–832.

    Article  CAS  PubMed  Google Scholar 

  4. Kokubo Y, Tomoike H, Tanaka C, et al: Association of sixty-one non-synonymous polymorphisms in forty-one hypertension candidate genes with blood pressure variation and hypertension. Hypertens Res 2006; 29: 611–619.

    Article  CAS  PubMed  Google Scholar 

  5. Nakanishi K : Analysis of TAP gene in IDDM. Nippon Rinsho 1994; 52: 2762–2766.

    CAS  PubMed  Google Scholar 

  6. Zukowska-Szczechowska E, Tomaszewski M, Grzeszczak W : Role of advanced glycosylation end products in the pathogenesis of hypertension. Przegl Lek 2003; 60: 585–587.

    PubMed  Google Scholar 

  7. Wang X, Desai K, Clausen JT, et al: Increased methylglyoxal and advanced glycation end products in kidney from spontaneously hypertensive rats. Kidney Int 2004; 66: 2315–2321.

    Article  CAS  PubMed  Google Scholar 

  8. Oshima T, Ozono R, Yano Y, et al: Beneficial effect of T-type calcium channel blockers on endothelial function in patients with essential hypertension. Hypertens Res 2005; 28: 889–894.

    Article  CAS  PubMed  Google Scholar 

  9. Mori Y, Ohyanagi M, Koida S, et al: Effects of endothelium-derived hyperpolarizing factor and nitric oxide on endothelial function in femoral resistance arteries of spontaneously hypertensive rats. Hypertens Res 2006; 29: 187–195.

    Article  CAS  PubMed  Google Scholar 

  10. Yang Z, Venardos K, Jones E, et al: Identification of a novel polymorphism in the 3′UTR of the L-arginine transporter gene SLC7A1. Contribution to hypertension and endothelial dysfunction. Circulation 2007; 115: 1269–1274.

    Article  CAS  PubMed  Google Scholar 

  11. Alberts P, Daumke O, Deverson EV, et al: Distinct functional properties of the TAP subunits coordinate the nucleotide-dependent transport cycle. Curr Biol 2001; 11: 242–251.

    Article  CAS  PubMed  Google Scholar 

  12. Ritz U, Drexler I, Sutter D, et al: Impaired transporter associated with antigen processing (TAP) function attributable to a single amino acid alteration in the peptide TAP subunit TAP1. J Immunol 2003; 170: 941–946.

    Article  CAS  PubMed  Google Scholar 

  13. Gao MY, Wu AH, Wen CX, et al: Investigating the correlation between polymorphisms with couple sharing rate of TAP gene and hypertensive disorder complicating pregnancy. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2006; 23: 165–168.

    CAS  PubMed  Google Scholar 

  14. Daumke O, Knittler MR : Functional asymmetry of the ATP-binding-cassettes of the ABC transporter TAP is determined by intrinsic properties of the nucleotide binding domains. Eur J Biochem 2001; 268: 4776–4786.

    Article  CAS  PubMed  Google Scholar 

  15. Saeki H, Kuwata S, Nakagawa H, et al: Analysis of disease-associated amino acid epitopes on HLA class II molecules in atopic dermatitis. J Allergy Clin Immunol 1995; 96: 1061–1068.

    Article  CAS  PubMed  Google Scholar 

  16. Trowsdale J, Ragoussis J, Campbell RD : Map of the human MHC. Immunol Today 1991; 12: 443–446.

    Article  CAS  PubMed  Google Scholar 

  17. Lankat-Buttgereit B, Tampe R : The transporter associated with antigen processing: function and implications in human diseases. Physiol Rev 2002; 82: 187–204.

    Article  CAS  PubMed  Google Scholar 

  18. Furukawa H, Murata S, Yabe T, et al: Splice acceptor site mutation of the transporter associated with antigen processing-1 gene in human bare lymphocyte syndrome. J Clin Invest 1999; 103: 755–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Colonna M, Bresnahan M, Bahram S, et al: Allelic variants of the human putative peptide transporter involved in antigen processing. Proc Natl Acad Sci U S A 1992; 89: 3932–3936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Russ G, Esquivel F, Yewdell JW, et al: Assembly, intracellular localization, and nucleotide binding properties of the human peptide transporters TAP1 and TAP2 expressed by recombinant vaccinia viruses. J Biol Chem 1995; 270: 21312–21318.

    Article  CAS  PubMed  Google Scholar 

  21. Marsh SG : Nomenclature for factors of the HLA system, update June 2005. Hum Immunol 2005; 66: 1025–1027.

    Article  PubMed  Google Scholar 

  22. Powis SH, Tonks S, Mockridge I, et al: Alleles and haplotypes of the MHC-encoded ABC transporters TAP1 and TAP2. Immunogenetics 1993; 37: 373–380.

    Article  CAS  PubMed  Google Scholar 

  23. Takeuchi F, Kuwata S, Nakano K, et al: Association of TAP1 and TAP2 with systemic sclerosis in Japanese. Clin Exp Rheumatol 1996; 14: 513–521.

    CAS  PubMed  Google Scholar 

  24. Maruya E, Ishikawa Y, Lin L, et al: New polymorphisms within human TAP2 in the ATP-binding domain and profiles of TAP polymorphism in Japanese. MHC 1996; 3: 1–8.

    Article  CAS  Google Scholar 

  25. Whang DH, Park H, Roh EY, et al: TAP1 and TAP2 gene polymorphisms and HLA-TAP haplotypes in Koreans based on 90 families. Hum Immunol 2005; 66: 998–1007.

    Article  CAS  PubMed  Google Scholar 

  26. Pyo CW, Hur SS, Kim YK, et al: Association of TAP and HLA-DM genes with psoriasis in Koreans. J Invest Dermatol 2003; 120: 616–622.

    Article  CAS  PubMed  Google Scholar 

  27. Hohler T, Weinmann A, Schneider PM, et al: TAP-polymorphisms in juvenile onset psoriasis and psoriatic arthritis. Hum Immunol 1996; 51: 49–54.

    Article  CAS  PubMed  Google Scholar 

  28. Teisserenc H BL, Briaud I, Busson M, Albert E, Bignon JD : TAP, LMP and HLA-DM polymorphism: 12th International Histocompatibility Workshop Study, in Charron D ( ed): Genetic Diversity of HLA—Functional and Medical Implications. Paris, EDK, Medical and Scientific International Publisher, 1997, p 159.

    Google Scholar 

  29. Cucca F, Congia M, Trowsdale J, et al: Insulin-dependent diabetes mellitus and the major histocompatibility complex peptide transporters TAP1 and TAP2: no association in a population with a high disease incidence. Tissue Antigens 1994; 44: 234–240.

    Article  CAS  PubMed  Google Scholar 

  30. Witkowska-Tobola AM, Szczerkowska-Dobosz A, Nedoszytko B, et al: Polymorphism of the TAP1 gene in Polish patients with psoriasis vulgaris. J Appl Genet 2004; 45: 391–393.

    PubMed  Google Scholar 

  31. Ismail A, Bousaffara R, Kaziz J, et al: Polymorphism in transporter antigen peptides gene (TAP1) associated with atopy in Tunisians. J Allergy Clin Immunol 1997; 99: 216–223.

    Article  CAS  PubMed  Google Scholar 

  32. Ozbas-Gerceker F, Ozguc M : Frequencies of TAP1 and TAP2 gene polymorphisms in the Anatolian population. Eur J Immunogenet 2003; 30: 97–99.

    Article  CAS  PubMed  Google Scholar 

  33. Barron KS, Reveille JD, Carrington M, et al: Susceptibility to Reiter's syndrome is associated with alleles of TAP genes. Arthritis Rheum 1995; 38: 684–689.

    Article  CAS  PubMed  Google Scholar 

  34. Chevrier D, Giral M, Braud V, et al: Effects of MHC-encoded TAP1 and TAP2 gene polymorphism and matching on kidney graft rejection. Transplantation 1995; 60: 292–296.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang SL, Chabod J, Penfornis A, et al: TAP1 and TAP2 gene polymorphism in rheumatoid arthritis in a population in eastern France. Eur J Immunogenet 2002; 29: 241–249.

    Article  CAS  PubMed  Google Scholar 

  36. Moins-Teisserenc H, Semana G, Alizadeh M, et al: TAP2 gene polymorphism contributes to genetic susceptibility to multiple sclerosis. Hum Immunol 1995; 42: 195–202.

    Article  CAS  PubMed  Google Scholar 

  37. Djilali-Saiah I, Benini V, Daniel S, et al: Linkage disequilibrium between HLA class II (DR, DQ, DP) and antigen processing (LMP, TAP, DM) genes of the major histocompatibility complex. Tissue Antigens 1996; 48: 87–92.

    Article  CAS  PubMed  Google Scholar 

  38. Faucz FR, Probst CM, Petzl-Erler ML : Polymorphism of LMP2, TAP1, LMP7 and TAP2 in Brazilian Amerindians and Caucasoids: implications for the evolution of allelic and haplotypic diversity. Eur J Immunogenet 2000; 27: 5–16.

    Article  CAS  PubMed  Google Scholar 

  39. Kuwata S, Yanagisawa M, Saeki H, et al: Lack of primary association between transporter associated with antigen processing genes and atopic dermatitis. J Allergy Clin Immunol 1995; 96: 1051–1060.

    Article  CAS  PubMed  Google Scholar 

  40. Ishihara M, Ohno S, Mizuki N, et al: Genetic polymorphisms of the major histocompatibility complex-encoded antigen-processing genes TAP and LMP in sarcoidosis. Hum Immunol 1996; 45: 105–110.

    Article  CAS  PubMed  Google Scholar 

  41. Lee HJ, Ha SJ, Han H, et al: Distribution of HLA-A, B alleles and polymorphisms of TAP and LMP genes in Korean patients with atopic dermatitis. Clin Exp Allergy 2001; 31: 1867–1874.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, P.R. China

    Chong Shen, Rongbin Yu, Hongbing Shen, Yaochu Xu & Cailiang Yao

  2. Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing, P.R. China

    Chong Shen & Guang Yang

  3. Department of Epidemiology and Biostatistics, School of Radiation Medicine and Public Health, Suzhou University, Suzhou, P.R. China

    Zhirong Guo

  4. Department of Chronic Noninfectious Disease Prevention and Control, Jiangsu Centers for Disease Prevention and Control, Nanjing, P.R. China

    Ming Wu & Xiaoshu Hu

Authors
  1. Chong Shen
    View author publications

    Search author on:PubMed Google Scholar

  2. Zhirong Guo
    View author publications

    Search author on:PubMed Google Scholar

  3. Ming Wu
    View author publications

    Search author on:PubMed Google Scholar

  4. Xiaoshu Hu
    View author publications

    Search author on:PubMed Google Scholar

  5. Guang Yang
    View author publications

    Search author on:PubMed Google Scholar

  6. Rongbin Yu
    View author publications

    Search author on:PubMed Google Scholar

  7. Hongbing Shen
    View author publications

    Search author on:PubMed Google Scholar

  8. Yaochu Xu
    View author publications

    Search author on:PubMed Google Scholar

  9. Cailiang Yao
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Chong Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, C., Guo, Z., Wu, M. et al. Association Study between Hypertension and A/G Polymorphism at Codon 637 of the Transporter Associated with Antigen Processing 1 Gene. Hypertens Res 30, 683–690 (2007). https://doi.org/10.1291/hypres.30.683

Download citation

  • Received: 10 October 2006

  • Accepted: 15 March 2007

  • Issue date: 01 August 2007

  • DOI: https://doi.org/10.1291/hypres.30.683

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • hypertension
  • transporter associated with antigen processing gene
  • polymorphism
Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited