Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Regression of L-NAME–Induced Hypertension: The Role of Nitric Oxide and Endothelium-Derived Constricting Factor
Download PDF
Download PDF
  • Original Article
  • Published: 01 April 2008

Regression of L-NAME–Induced Hypertension: The Role of Nitric Oxide and Endothelium-Derived Constricting Factor

  • Ludovit Paulis1,2,3,
  • Josef Zicha2,
  • Jaroslav Kunes2,
  • Silvie Hojna2,
  • Michal Behuliak1,
  • Peter Celec1,4,
  • Stanislava Kojsova3,
  • Olga Pechanova1,3 &
  • …
  • Fedor Simko1 

Hypertension Research volume 31, pages 793–803 (2008)Cite this article

  • 7693 Accesses

  • Metrics details

Abstract

NG-Nitro-L-arginine-methyl ester (L-NAME)–induced hypertension is a well established model of experimental hypertension. Although regression experiments are effective at approximating a clinical setting the reversal of already established L-NAME hypertension has not been intensively researched. We investigated whether spontaneous regression of L-NAME hypertension after discontinuing the drug administration was associated with recovery of endothelial dysfunction. Special attention was devoted to NO signaling and endothelium-derived constricting factor (EDCF) formation in various parts of the vascular tree. Male adult Wistar rats were divided into 4 groups: an L-NAME (5 weeks), a spontaneous recovery (5 weeks L-NAME + 3 weeks of recovery) and two age-matched control groups (a 5- and 8-week control group). The NO-mediated and EDCF-mediated components of acetylcholine-induced responses were evaluated in preconstricted small mesenteric and femoral arteries. The activity, mRNA and protein expression of NO synthase together with the mRNA expression of cyclooxygenase were determined in the aorta. L-NAME administration caused hypertension, impaired NO signaling (as indicated by the reduced NO component of acetylcholine-induced relaxation and decreased NO synthase activity) in all arteries investigated and reduced the inner diameter of the femoral artery. Moreover, we observed enhanced cyclooxygenase-dependent EDCF formation in the femoral arteries and enhanced cyclooxygenase-2 expression in the aortas of L-NAME–treated rats. During spontaneous recovery a functional restoration of NO signaling took place in all parts of the vascular tree. However, the increases in systolic blood pressure, EDCF formation, and cyclooxygenase expression and the reduction in femoral artery diameter were not completely restored. We conclude that impaired NO signaling was improved after the cessation of L-NAME administration. However, persisting arterial structural alterations and enhanced EDCF formation may decelerate blood pressure reduction even after the restoration of NO synthase activity.

Similar content being viewed by others

The vascular endothelial growth factor trap aflibercept induces vascular dysfunction and hypertension via attenuation of eNOS/NO signaling in mice

Article 10 December 2020

Pleiotropic activation of endothelial function by angiotensin II receptor blockers is crucial to their protective anti-vascular remodeling effects

Article Open access 13 June 2022

Endothelial cell Orai1 is essential for endothelium-dependent contraction of mouse carotid arteries in normotensive and hypertensive mice

Article 26 January 2024

Article PDF

References

  1. Konishi M, Su C : Role of endothelium in dilator responses of spontaneously hypertensive rat arteries. Hypertension 1983; 5: 881–886.

    Article  CAS  PubMed  Google Scholar 

  2. Lockette W, Otsuka Y, Carretero O : The loss of endothelium-dependent vascular relaxation in hypertension. Hypertension 1986; 8 ( Suppl II): II-61–II-66.

    CAS  Google Scholar 

  3. Lüscher TF, Raij L, Vanhoutte PM : Endothelium-dependent vascular responses in normotensive and hypertensive Dahl rats. Hypertension 1987; 9: 157–163.

    Article  PubMed  Google Scholar 

  4. Vanhoutte PM, Boulanger CM : Endothelium-dependent responses in hypertension. Hypertens Res 1995; 18: 87–98.

    Article  CAS  PubMed  Google Scholar 

  5. Mori Y, Ohyanagi M, Koida S, Ueda A, Ishiko K, Iwasaki T : Effects of endothelium-derived hyperpolarizing factor and nitric oxide on endothelial function in femoral resistance arteries of spontaneously hypertensive rats. Hypertens Res 2006; 29: 187–195.

    Article  CAS  PubMed  Google Scholar 

  6. Morton JJ, Beattie EC, Speirs A, Gulliver F : Persistent hypertension following inhibition of nitric oxide formation in the young Wistar rat: role of renin and vascular hypertrophy. J Hypertens 1993; 11: 1083–1088.

    Article  CAS  PubMed  Google Scholar 

  7. Haudenschild CC, Prescott MF, Chobanian AV : Effects of hypertension and its reversal on aortic intima lesions of the rat. Hypertension 1980; 2: 33–44.

    Article  CAS  PubMed  Google Scholar 

  8. Bernatova I, Pechanova O, Babal P, Kysela S, Stvrtina S, Andriantsitohaina R : Wine polyphenols improve cardiovascular remodeling and vascular function in NO-deficient hypertension. Am J Physiol Heart Circ Physiol 2002; 282: H942–H948.

    Article  CAS  PubMed  Google Scholar 

  9. Kristek F : Different structure of coronary wall in two types of hypertension: NO deficiency and SHR, in Moncada S, Gustafsson LE, Wiklund NP, Higgs EA (eds): The Biology of Nitric Oxide (Pt 7). London, Portland Press Ltd, 1997, p 69.

    Google Scholar 

  10. Paulis L, Zicha J, Kunes J, et al: Regression of L-NAME-induced hypertension: the role of NO-pathway and endothelium-derived constricting factor. J Hypertens 2006; 24 ( Suppl 4): S7 ( Abstract).

    Google Scholar 

  11. Lüscher TF, Vanhoutte PM : Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension 1986; 8: 344–348.

    Article  PubMed  Google Scholar 

  12. Mulvany MJ, Halpern W : Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res 1977; 41: 19–26.

    Article  CAS  PubMed  Google Scholar 

  13. Koga T, Takata Y, Kobayashi K, Takishita S, Yamashita Y, Fujishima M : Age and hypertension promote endothelium-dependent contractions to acetylcholine in the aorta of the rat. Hypertension 1989; 14: 542–548.

    Article  CAS  PubMed  Google Scholar 

  14. Bredt DS, Snyder SH : Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A 1990; 87: 682–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bernatova I, Pechanova O, Kristek F : Mechanism of structural remodeling of the rat aorta during long-term NG-nitro-L-arginine methyl ester treatment. Jpn J Pharmacol 1999; 81: 99–106.

    Article  CAS  PubMed  Google Scholar 

  16. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ : Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265–275.

    CAS  PubMed  Google Scholar 

  17. Ribeiro MO, Antunes E, de-Nucci G, Lovisolo SM, Zatz R : Chronic inhibition of nitric oxide synthesis. A new model of arterial hypertension. Hypertension 1992; 20: 298–303.

    Article  CAS  PubMed  Google Scholar 

  18. Pechanova O, Bernatova I, Pelouch V, Simko F : Protein remodeling of the heart in NO deficient hypertension: the effect of captopril. J Mol Cell Cardiol 1997; 29: 3365–3374.

    Article  CAS  PubMed  Google Scholar 

  19. Simko F, Matuskova J, Luptak I, et al: Effect of simvastatin on remodeling of the left ventricle and aorta in L-NAME–induced hypertension. Life Sci 2004; 74: 1211–1224.

    Article  CAS  PubMed  Google Scholar 

  20. Rossi MA, Colombini-Netto M : Chronic inhibition of NO synthesis per se promotes structural intimal remodeling of the rat aorta. J Hypertens 2001; 19: 1567–1579.

    Article  CAS  PubMed  Google Scholar 

  21. Nagao T, Illiano S, Vanhoutte PM : Heterogeneous distribution of endothelium-dependent relaxations resistant to NG-nitro-L-arginine in rats. Am J Physiol 1992; 263: H1090–H1094.

    CAS  PubMed  Google Scholar 

  22. Yanagisawa M, Kurihara H, Kimura S, et al: A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332: 411–415.

    Article  CAS  PubMed  Google Scholar 

  23. Kifor I, Dzau VJ : Endothelial renin-angiotensin pathway: evidence for intracellular synthesis and secretion of angiotensin. Circ Res 1987; 60: 422–428.

    Article  CAS  PubMed  Google Scholar 

  24. Kato T, Iwama Y, Okumura K, Hashimoto H, Ito T, Satake T : Prostaglandin H2 may be the endothelium-derived contracting factor released by acetylcholine in the aorta of the rat. Hypertension 1990; 15: 475–481.

    Article  CAS  PubMed  Google Scholar 

  25. Vanhoutte PM, Katusic ZS : Endothelium-derived contracting factor: endothelin and/or superoxide anion? Trends Pharmacol Sci 1988; 9: 229–230.

    Article  CAS  PubMed  Google Scholar 

  26. Jameson M, Dai FX, Lüscher T, Skopec J, Diederich A, Diederich D : Endothelium-derived contracting factors in resistance arteries of young spontaneously hypertensive rats before development of overt hypertension. Hypertension 1993; 21: 280–288.

    Article  CAS  PubMed  Google Scholar 

  27. Katusic ZS, Vanhoutte PM : Superoxide anion is an endothelium-derived contracting factor. Am J Physiol 1989; 257: H33–H37.

    CAS  PubMed  Google Scholar 

  28. Pearson PJ, Lin PJ, Schaff HV : Production of endothelium-derived contracting factor is enhanced after coronary reperfusion. Ann Thorac Surg 1991; 51: 788–793.

    Article  CAS  PubMed  Google Scholar 

  29. Beckman JS, Beckman TW, Chen J, Marshall PA : Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 1990; 87: 1620–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kanner J, Harel S, Granit R : Nitric oxide, an inhibitor of lipid oxidation by lipoxygenase, cyclooxygenase and hemoglobin. Lipids 1992; 27: 46–49.

    Article  CAS  PubMed  Google Scholar 

  31. Luscher TF, Aarhus LL, Vanhoutte PM : Indomethacin improves the impaired endothelium-dependent relaxations in small mesenteric arteries of the spontaneously hypertensive rat. Am J Hypertens 1990; 3: 55–58.

    Article  CAS  PubMed  Google Scholar 

  32. Dahl LK : Effects of chronic excess salt feeding. Induction of self-sustaining hypertension in rats. J Exp Med 1961; 114: 231–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Herrera-Acosta J, Gabbai F, Franco M, et al: Glomerular hemodynamics in persistent renovascular hypertension in the rat. Hypertension 1983; 5: V110–V114.

    Article  CAS  PubMed  Google Scholar 

  34. Bernatova I, Pechanova O, Pelouch V, Simko F : Regression of chronic L-NAME–treatment–induced left ventricular hypertrophy: effect of captopril. J Mol Cell Cardiol 2000; 32: 177–185.

    Article  CAS  PubMed  Google Scholar 

  35. Lüscher TF, Diederich D, Weber E, Vanhoutte PM, Bühler FR : Endothelium-dependent responses in carotid and renal arteries of normotensive and hypertensive rats. Hypertension 1988; 11: 573–578.

    Article  PubMed  Google Scholar 

  36. Katusic ZS, Shepherd JT, Vanhoutte PM : Endothelium-dependent contractions to stretch in canine basilar arteries. Am J Physiol 1987; 252: H671–H673.

    CAS  PubMed  Google Scholar 

  37. Hansson L, Zanchetti A, Carruthers SG, et al: Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomized trial. HOT Study Group. Lancet 1998; 351: 1755–1762.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Pathophysiology, School of Natural Sciences, Comenius University, Bratislava, Slovak Republic

    Ludovit Paulis, Michal Behuliak, Peter Celec, Olga Pechanova & Fedor Simko

  2. Institute of Physiology and Center of Cardiovascular Research, Academy of Sciences of the Czech Republic, Prague, Czech Republic

    Ludovit Paulis, Josef Zicha, Jaroslav Kunes & Silvie Hojna

  3. Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic

    Ludovit Paulis, Stanislava Kojsova & Olga Pechanova

  4. Department of Molecular Biology, School of Natural Sciences, Comenius University, Bratislava, Slovak Republic

    Peter Celec

Authors
  1. Ludovit Paulis
    View author publications

    Search author on:PubMed Google Scholar

  2. Josef Zicha
    View author publications

    Search author on:PubMed Google Scholar

  3. Jaroslav Kunes
    View author publications

    Search author on:PubMed Google Scholar

  4. Silvie Hojna
    View author publications

    Search author on:PubMed Google Scholar

  5. Michal Behuliak
    View author publications

    Search author on:PubMed Google Scholar

  6. Peter Celec
    View author publications

    Search author on:PubMed Google Scholar

  7. Stanislava Kojsova
    View author publications

    Search author on:PubMed Google Scholar

  8. Olga Pechanova
    View author publications

    Search author on:PubMed Google Scholar

  9. Fedor Simko
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Ludovit Paulis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulis, L., Zicha, J., Kunes, J. et al. Regression of L-NAME–Induced Hypertension: The Role of Nitric Oxide and Endothelium-Derived Constricting Factor. Hypertens Res 31, 793–803 (2008). https://doi.org/10.1291/hypres.31.793

Download citation

  • Received: 12 August 2007

  • Accepted: 27 November 2007

  • Issue date: 01 April 2008

  • DOI: https://doi.org/10.1291/hypres.31.793

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • arteries
  • cyclooxygenase
  • endothelial factors
  • nitric oxide
  • vascular reactivity

This article is cited by

  • Nitric oxide storage levels modulate vasodilation and the hypotensive effect induced by photobiomodulation using an aluminum gallium arsenide (AlGaAs) diode laser (660 nm)

    • Tereza Cristina Buzinari
    • Thiago Francisco de Moraes
    • Gerson Jhonatan Rodrigues

    Lasers in Medical Science (2022)

  • Electrical stimulation of the carotid sinus lowers arterial pressure and improves heart rate variability in l-NAME hypertensive conscious rats

    • Gean Domingos-Souza
    • Fernanda Machado Santos-Almeida
    • Rubens Fazan

    Hypertension Research (2020)

  • Molecular metabolic fingerprinting approach to investigate the effects of borneol on metabolic alterations in the liver of nitric oxide deficient hypertensive rats

    • Murugesan Saravanakumar
    • Jeganathan Manivannan
    • Boobalan Raja

    Molecular and Cellular Biochemistry (2012)

  • Effect of L-NAME-induced hypertension on melatonin receptors and melatonin levels in the pineal gland and the peripheral organs of rats

    • Miroslava Benova
    • Iveta Herichova
    • Michal Zeman

    Hypertension Research (2009)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited