Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Effects of Rosiglitazone (a Peroxysome Proliferator−Activated Receptor γ Agonist) on the Blood Pressure and Aortic Structure in Metabolically Programmed (Perinatal Low Protein) Rats
Download PDF
Download PDF
  • Original Article
  • Published: 01 May 2008

Effects of Rosiglitazone (a Peroxysome Proliferator−Activated Receptor γ Agonist) on the Blood Pressure and Aortic Structure in Metabolically Programmed (Perinatal Low Protein) Rats

  • Thiago da Silva Torres1,
  • Geraldo D'oliveira Silva1,
  • Márcia Barbosa Aguila1,
  • Jorge José de Carvalho1 &
  • …
  • Carlos A Mandarim-De-Lacerda1 

Hypertension Research volume 31, pages 965–975 (2008)Cite this article

  • 1139 Accesses

  • Metrics details

Abstract

This study investigated the effects of rosiglitazone on nutritionally programmed chronic disease, with a focus on blood pressure (BP) and aortic wall structural remodeling. Wistar pregnant rats were fed one of two diets: a normal protein diet (19% protein; NP rats) or low-protein diet (5% protein; LP rats). Male offspring at 3 months of age were randomly divided into four groups: NP offspring treated with rosiglitazone (NPR); untreated NP offspring (NP); LP offspring treated with rosiglitazone (LPR); untreated LP offspring (LP). Rosiglitazone was administered at a dose of 5 mg/kg/d until 6 months of age. BP was elevated in LP offspring. Rosiglitazone reduced BP beginning in the first week of treatment in the LPR offspring. The insulin sensitivity was increased in LP offspring, and was not altered by rosiglitazone. LP offspring exhibited a 40% reduction in the amount of elastic fibers in the aorta wall compared with NP offspring (p<0.01), and the quantity of elastic fibers was not altered by rosiglitazone. The smooth muscle cells, elastic lamellae, circumferential wall tension (CWT) and tensile stress (TS) were increased in LP offspring, indicating increased blood flow in the aorta. Rosiglitazone reduced both CWT and TS by 30% compared to the levels in untreated LP offspring (p<0.01 for both). Rosiglitazone restored the expressions of angiotensin II type 1 receptor and endothelial nitric oxide synthase nearly to the levels in the NP offspring. ANOVA disclosed a significant two-factor interaction between protein content in the diet and rosiglitazone treatment (p<0.001 for CWT and p<0.00001 for TS, two-way ANOVA). We conclude that rosiglitazone has beneficial effects in reducing the BP and the aortic tunica media hypertrophy with consequent balance of the wall stress in metabolically programmed offspring.

Similar content being viewed by others

Cardiovascular complications are resolved by tuna protein hydrolysate supplementation in rats fed with a high-fat diet

Article Open access 28 July 2023

Dynamic personalized risk prediction in chronic heart failure patients: a longitudinal, clinical investigation of 92 biomarkers (Bio-SHiFT study)

Article Open access 18 February 2022

Effect of the traditional Chinese medicine Pinggan-Qianyang decoction on SIRT1–PTEN signaling in vascular aging in spontaneously hypertensive rats

Article Open access 29 June 2021

Article PDF

References

  1. Gallou-Kabani C, Junien C : Nutritional epigenomics of metabolic syndrome: new perspective against the epidemic. Diabetes 2005; 54: 1899–1906.

    Article  CAS  PubMed  Google Scholar 

  2. Zandi-Nejad K, Luyckx VA, Brenner BM : Adult hypertension and kidney disease: the role of fetal programming. Hypertension 2006; 47: 502–508.

    Article  CAS  PubMed  Google Scholar 

  3. Heywood WE, Mian N, Milla PJ, Lindley KJ : Programming of defective rat pancreatic beta-cell function in offspring from mothers fed a low-protein diet during gestation and the suckling periods. Clin Sci (Lond) 2004; 107: 37–45.

    Article  CAS  Google Scholar 

  4. Bonora E : The metabolic syndrome and cardiovascular disease. Ann Med 2006; 38: 64–80.

    Article  CAS  PubMed  Google Scholar 

  5. Olivetti G, Melissari M, Marchetti G, Anversa P : Quantitative structural changes of the rat thoracic aorta in early spontaneous hypertension. Tissue composition, and hypertrophy and hyperplasia of smooth muscle cells. Circ Res 1982; 51: 19–26.

    Article  CAS  PubMed  Google Scholar 

  6. Safar ME, London GM, Asmar R, Frohlich ED : Recent advances on large arteries in hypertension. Hypertension 1998; 32: 156–161.

    Article  CAS  PubMed  Google Scholar 

  7. Bouvet C, Gilbert LA, Girardot D, deBlois D, Moreau P : Different involvement of extracellular matrix components in small and large arteries during chronic NO synthase inhibition. Hypertension 2005; 45: 432–437.

    Article  CAS  PubMed  Google Scholar 

  8. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA : An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 1995; 270: 12953–12956.

    Article  CAS  PubMed  Google Scholar 

  9. Granberry MC, Fonseca VA : Cardiovascular risk factors associated with insulin resistance: effects of oral antidiabetic agents. Am J Cardiovasc Drugs 2005; 5: 201–209.

    Article  CAS  PubMed  Google Scholar 

  10. Brunani A, Caumo A, Graci S, Castagna G, Viberti G, Liuzzi A : Rosiglitazone is more effective than metformin in improving fasting indexes of glucose metabolism in severely obese, non-diabetic patients. Diabetes Obes Metab 2008; 10: 460–467.

    Article  CAS  PubMed  Google Scholar 

  11. Negro R, Mangieri T, Dazzi D, Pezzarossa A, Hassan H : Rosiglitazone effects on blood pressure and metabolic parameters in nondipper diabetic patients. Diabetes Res Clin Pract 2005; 70: 20–25.

    Article  CAS  PubMed  Google Scholar 

  12. Ryan MJ, Didion SP, Mathur S, Faraci FM, Sigmund CD : PPAR(gamma) agonist rosiglitazone improves vascular function and lowers blood pressure in hypertensive transgenic mice. Hypertension 2004; 43: 661–666.

    Article  CAS  PubMed  Google Scholar 

  13. Reeves PG, Nielsen FH, Fahey GC Jr : AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993; 123: 1939–1951.

    Article  CAS  PubMed  Google Scholar 

  14. Langley-Evans SC, Gardner DS, Jackson AA : Maternal protein restriction influences the programming of the rat hypothalamic-pituitary-adrenal axis. J Nutr 1996; 126: 1578–1585.

    Article  CAS  PubMed  Google Scholar 

  15. Quinn R : Comparing rat's to human's age: how old is my rat in people years? Nutrition 2005; 21: 775–777.

    Article  PubMed  Google Scholar 

  16. Fullmer HM, Lillie RD : A selective stain for elastic tissue (orcinol-new fuchsin). Stain Technol 1956; 31: 27–29.

    Article  CAS  PubMed  Google Scholar 

  17. Carallo C, Irace C, Pujia A, et al: Evaluation of common carotid hemodynamic forces. Relations with wall thickening. Hypertension 1999; 34: 217–221.

    Article  CAS  PubMed  Google Scholar 

  18. Mandarim-de-Lacerda CA : Stereological tools in biomedical research. An Acad Bras Cienc 2003; 75: 469–486.

    Article  PubMed  Google Scholar 

  19. Pires KMP, Aguila MB, Mandarim-de-Lacerda CA : Early renal structure alteration in rat offspring from dams fed low protein diet. Life Sci 2006; 79: 2128–2134.

    Article  CAS  PubMed  Google Scholar 

  20. Ozanne SE : Metabolic programming in animals. Br Med Bull 2001; 60: 143–152.

    Article  CAS  PubMed  Google Scholar 

  21. Souza-Mello V, Mandarim-de-Lacerda CA, Aguila MB : Hepatic structural alteration in adult programmed offspring (severe maternal protein restriction) is aggravated by post-weaning high-fat diet. Br J Nutr 2007; 98: 1159–1169.

    Article  CAS  PubMed  Google Scholar 

  22. Brawley L, Itoh S, Torrens C, et al: Dietary protein restriction in pregnancy induces hypertension and vascular defects in rat male offspring. Pediatr Res 2003; 54: 83–90.

    Article  CAS  PubMed  Google Scholar 

  23. Langley-Evans SC : Intrauterine programming of hypertension in the rat: nutrient interactions. Comp Biochem Physiol A Physiol 1996; 114: 327–333.

    Article  CAS  PubMed  Google Scholar 

  24. Nissen SE, Wolski K : Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007; 356: 2457–2471.

    Article  CAS  PubMed  Google Scholar 

  25. Home PD, Pocock SJ, Beck-Nielsen H, et al: Rosiglitazone evaluated for cardiovascular outcomes—an interim analysis. N Engl J Med 2007; 357: 28–38.

    Article  CAS  PubMed  Google Scholar 

  26. Krall RL : Cardiovascular safety of rosiglitazone. Lancet 2007; 369: 1995–1996.

    Article  PubMed  Google Scholar 

  27. Yue TL, Bao W, Gu JL, et al: Rosiglitazone treatment in Zucker diabetic Fatty rats is associated with ameliorated cardiac insulin resistance and protection from ischemia/reperfusion-induced myocardial injury. Diabetes 2005; 54: 554–562.

    Article  CAS  PubMed  Google Scholar 

  28. Molavi B, Chen J, Mehta JL : Cardioprotective effects of rosiglitazone are associated with selective over-expression of type 2 angiotensin receptors and inhibition of P42/44 MAPK. Am J Physiol Heart Circ Physiol 2006; 291: H687–H693.

    Article  CAS  PubMed  Google Scholar 

  29. Gonon AT, Bulhak A, Labruto F, Sjoquist PO, Pernow J : Cardioprotection mediated by rosiglitazone, a peroxisome proliferator−activated receptor gamma ligand, in relation to nitric oxide. Basic Res Cardiol 2007; 102: 80–89.

    Article  CAS  PubMed  Google Scholar 

  30. Bezie Y, Lacolley P, Laurent S, Gabella G : Connection of smooth muscle cells to elastic lamellae in aorta of spontaneously hypertensive rats. Hypertension 1998; 32: 166–169.

    Article  CAS  PubMed  Google Scholar 

  31. Skilton MR, Gosby AK, Wu BJ, et al: Maternal undernutrition reduces aortic wall thickness and elastin content in offspring rats without altering endothelial function. Clin Sci (Lond) 2006; 111: 281–287.

    Article  CAS  Google Scholar 

  32. Giummelly P, Lartaud-Idjouadiene I, Marque V, et al: Effects of aging and antihypertensive treatment on aortic internal diameter in spontaneously hypertensive rats. Hypertension 1999; 34: 207–211.

    Article  CAS  PubMed  Google Scholar 

  33. Van Vre EA, van Beusekom HM, Vrints CJ, Bosmans JM, Bult H, Van der Giessen WJ : Stereology: a simplified and more time-efficient method than planimetry for the quantitative analysis of vascular structures in different models of intimal thickening. Cardiovasc Pathol 2007; 16: 43–50.

    Article  PubMed  Google Scholar 

  34. Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R : Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res 2001; 49: 460–467.

    Article  CAS  PubMed  Google Scholar 

  35. Yzydorczyk C, Gobeil F Jr, Cambonie G, et al: Exaggerated vasomotor response to ANG II in rats with fetal programming of hypertension associated with exposure to a low-protein diet during gestation. Am J Physiol Regul Integr Comp Physiol 2006; 291: R1060–R1068.

    Article  CAS  PubMed  Google Scholar 

  36. Benkirane K, Viel EC, Amiri F, Schiffrin EL : Peroxisome proliferator−activated receptor gamma regulates angiotensin II−stimulated phosphatidylinositol 3-kinase and mitogen-activated protein kinase in blood vessels in vivo. Hypertension 2006; 47: 102–108.

    Article  CAS  PubMed  Google Scholar 

  37. Benkirane K, Amiri F, Diep QN, El Mabrouk M, Schiffrin EL : PPAR-gamma inhibits ANG II-induced cell growth via SHIP2 and 4E-BP1. Am J Physiol 2006; 290: H390–H397.

    CAS  Google Scholar 

  38. Molavi B, Chen J, Mehta JL : Cardioprotective effects of rosiglitazone are associated with selective overexpression of type 2 angiotensin receptors and inhibition of p42/44 MAPK. Am J Physiol 2006; 291: H687–H693.

    Article  CAS  Google Scholar 

  39. Erbe DV, Gartrell K, Zhang YL, et al: Molecular activation of PPARgamma by angiotensin II type 1−receptor antagonists. Vascul Pharmacol 2006; 45: 154–162.

    Article  CAS  PubMed  Google Scholar 

  40. Harte A, McTernan P, Chetty R, et al: Insulin-mediated upregulation of the renin angiotensin system in human subcutaneous adipocytes is reduced by rosiglitazone. Circulation 2005; 111: 1954–1961.

    Article  CAS  PubMed  Google Scholar 

  41. Zhou MS, Schulman IH, Raij L : Nitric oxide, angiotensin II, and hypertension. Semin Nephrol 2004; 24: 366–378.

    Article  CAS  PubMed  Google Scholar 

  42. Maejima Y, Adachi S, Morikawa K, Ito H, Isobe M : Nitric oxide inhibits myocardial apoptosis by preventing caspase-3 activity via S-nitrosylation. J Mol Cell Cardiol 2005; 38: 163–174.

    Article  CAS  PubMed  Google Scholar 

  43. do Carmo Pinho Franco M, Nigro D, Fortes ZB, et al: Intrauterine undernutrition—renal and vascular origin of hypertension. Cardiovasc Res 2003; 60: 228–234.

    Article  PubMed  CAS  Google Scholar 

  44. Franco Mdo C, Arruda RM, Dantas AP, et al: Intrauterine undernutrition: expression and activity of the endothelial nitric oxide synthase in male and female adult offspring. Cardiovasc Res 2002; 56: 145–153.

    Article  PubMed  Google Scholar 

  45. Polikandriotis JA, Mazzella LJ, Rupnow HL, Hart CM : Peroxisome proliferator−activated receptor gamma ligands stimulate endothelial nitric oxide production through distinct peroxisome proliferator−activated receptor gamma−dependent mechanisms. Arterioscler Thromb Vasc Biol 2005; 25: 1810–1816.

    Article  CAS  PubMed  Google Scholar 

  46. De Ciuceis C, Amiri F, Iglarz M, Cohn JS, Touyz RM, Schiffrin EL : Synergistic vascular protective effects of combined low doses of PPARalpha and PPARgamma activators in angiotensin II−induced hypertension in rats. Br J Pharmacol 2007; 151: 45–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang S, Jiang JL, Hu CP, Zhang XJ, Yang DL, Li YJ : Relationship between protective effects of rosiglitazone on endothelium and endogenous nitric oxide synthase inhibitor in streptozotocin-induced diabetic rats and cultured endothelial cells. Diabetes Metab Res Rev 2007; 23: 157–164.

    Article  PubMed  CAS  Google Scholar 

  48. Diep QN, El Mabrouk M, Cohn JS, et al: Structure, endothelial function, cell growth, and inflammation in blood vessels of angiotensin II−infused rats: role of peroxisome proliferator−activated receptor-gamma. Circulation 2002; 105: 2296–2302.

    Article  CAS  PubMed  Google Scholar 

  49. Iglarz M, Touyz RM, Viel EC, et al: Peroxisome proliferator−activated receptor-alpha and receptor-gamma activators prevent cardiac fibrosis in mineralocorticoid-dependent hypertension. Hypertension 2003; 42: 737–743.

    Article  CAS  PubMed  Google Scholar 

  50. Gao DF, Niu XL, Hao GH, et al: Rosiglitazone inhibits angiotensin II−induced CTGF expression in vascular smooth muscle cells—role of PPAR-gamma in vascular fibrosis. Biochem Pharmacol 2007; 73: 185–197.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Laboratory of Morphometry and Cardiovascular Morphology, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil

    Thiago da Silva Torres, Geraldo D'oliveira Silva, Márcia Barbosa Aguila, Jorge José de Carvalho & Carlos A Mandarim-De-Lacerda

Authors
  1. Thiago da Silva Torres
    View author publications

    Search author on:PubMed Google Scholar

  2. Geraldo D'oliveira Silva
    View author publications

    Search author on:PubMed Google Scholar

  3. Márcia Barbosa Aguila
    View author publications

    Search author on:PubMed Google Scholar

  4. Jorge José de Carvalho
    View author publications

    Search author on:PubMed Google Scholar

  5. Carlos A Mandarim-De-Lacerda
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Carlos A Mandarim-De-Lacerda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres, T., D'oliveira Silva, G., Aguila, M. et al. Effects of Rosiglitazone (a Peroxysome Proliferator−Activated Receptor γ Agonist) on the Blood Pressure and Aortic Structure in Metabolically Programmed (Perinatal Low Protein) Rats. Hypertens Res 31, 965–975 (2008). https://doi.org/10.1291/hypres.31.965

Download citation

  • Received: 06 August 2007

  • Accepted: 03 December 2007

  • Issue date: 01 May 2008

  • DOI: https://doi.org/10.1291/hypres.31.965

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • chronic diseases
  • peroxysome proliferator–activated receptor γ agonist
  • arterial remodeling
  • hypertension
  • insulin

This article is cited by

  • Maternal caffeine administration leads to adverse effects on adult mice offspring

    • Diana F. Serapiao-Moraes
    • Vanessa Souza-Mello
    • Tatiane S. Faria

    European Journal of Nutrition (2013)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited