Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Cholesterol Reduction and Atherosclerosis Inhibition by Bezafibrate in Low-Density Lipoprotein Receptor Knockout Mice
Download PDF
Download PDF
  • Original Article
  • Published: 01 May 2008

Cholesterol Reduction and Atherosclerosis Inhibition by Bezafibrate in Low-Density Lipoprotein Receptor Knockout Mice

  • Toshihiro Inaba1,
  • Hiroaki Yagyu1,
  • Naoki Itabashi1,
  • Fumiko Tazoe1,
  • Nobuya Fujita1,
  • Shu-ichi Nagashima1,
  • Koji Okada1,
  • Mitsuyo Okazaki2,
  • Yusuke Furukawa3 &
  • …
  • Shun Ishibashi1 

Hypertension Research volume 31, pages 999–1005 (2008)Cite this article

  • 1563 Accesses

  • Metrics details

Abstract

Fibrates, peroxisome proliferator−activated receptor α agonists, are widely used as lipid-lowering agents with anti-atherogenic activity. However, conflicting results have been reported with regard to their pharmacological effects on plasma lipoprotein profiles as well as on atherosclerosis in animal models. Furthermore, the anti-atherogenic effects of bezafibrate, one of the most commonly used fibrates, in animal models have not been reported. In the present study, we investigated the effects of bezafibrate on lipoprotein profiles as well as on atherosclerosis in low-density lipoprotein receptor knockout (LDLR−/−) mice fed an atherogenic diet for 8 weeks. Bezafibrate decreased plasma levels of both cholesterol and triglycerides (TG), while increasing plasma levels of high-density lipoprotein-cholesterol (HDL-C). Since hepatic TG production was significantly reduced in the bezafibrate-treated mice lacking LDLR, the plasma lipid−lowering effects of bezafibrate might be primarily mediated by the suppression of hepatic production of apolipoprotein-B−containing lipoproteins. In parallel with the reduced ratio of non-HDL-C to HDL-C, bezafibrate suppressed fatty streak lesions in the aortic sinus by 51%. To determine whether or not bezafibrate directly alters the expression of genes relevant to atherosclerosis, we measured mRNA expression levels of three genes in the aorta by real-time PCR: ATP-binding cassette transporter A1, lipoprotein lipase, and monocyte chemoattractant protein-1. The results showed that there were no differences in the expression of these genes between mice treated with bezafibrate and those not. In conclusion, bezafibrate inhibits atherosclerosis in LDLR−/− mice primarily by decreasing the ratio of non-HDL-C to HDL-C.

Similar content being viewed by others

Genetically predicted lipid traits mediate the association between folic acid and atherosclerosis

Article Open access 17 August 2024

An atypical atherogenic chemokine that promotes advanced atherosclerosis and hepatic lipogenesis

Article Open access 07 March 2025

Apolipoprotein O modulates cholesterol metabolism via NRF2/CYB5R3 independent of LDL receptor

Article Open access 03 June 2024

Article PDF

References

  1. Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC : Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998; 98: 2088–2093.

    Article  CAS  Google Scholar 

  2. Willson TM, Brown PJ, Sternbach DD, Henke BR : The PPARs: from orphan receptors to drug discovery. J Med Chem 2000; 43: 527–550.

    Article  CAS  Google Scholar 

  3. Shepherd J : Mechanism of action of fibrates. Postgrad Med J 1993; 69 ( Suppl 1): S34–S41.

    CAS  PubMed  Google Scholar 

  4. Caslake MJ, Packard CJ, Gaw A, et al: Fenofibrate and LDL metabolic heterogeneity in hypercholesterolemia. Arterioscler Thromb 1993; 13: 702–711.

    Article  CAS  Google Scholar 

  5. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, et al: PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 1996; 15: 5336–5348.

    Article  CAS  Google Scholar 

  6. Heller F, Harvengt C : Effects of clofibrate, bezafibrate, fenofibrate and probucol on plasma lipolytic enzymes in normolipaemic subjects. Eur J Clin Pharmacol 1983; 25: 57–63.

    Article  CAS  Google Scholar 

  7. Staels B, Auwerx J : Perturbation of developmental gene expression in rat liver by fibric acid derivatives: lipoprotein lipase and alpha-fetoprotein as models. Development 1992; 115: 1035–1043.

    CAS  PubMed  Google Scholar 

  8. Staels B, Vu-Dac N, Kosykh VA, et al: Fibrates downregulate apolipoprotein C-III expression independent of induction of peroxisomal acyl coenzyme A oxidase. A potential mechanism for the hypolipidemic action of fibrates. J Clin Invest 1995; 95: 705–712.

    Article  CAS  Google Scholar 

  9. Wang CS, McConathy WJ, Kloer HU, Alaupovic P : Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest 1985; 75: 384–390.

    Article  CAS  Google Scholar 

  10. Torra IP, Chinetti G, Duval C, Fruchart JC, Staels B : Peroxisome proliferator−activated receptors: from transcriptional control to clinical practice. Curr Opin Lipidol 2001; 12: 245–254.

    Article  CAS  Google Scholar 

  11. Staels B, Auwerx J : Regulation of apo A-I gene expression by fibrates. Atherosclerosis 1998; 137 ( Suppl): S19–S23.

    Article  CAS  Google Scholar 

  12. Berthou L, Saladin R, Yaqoob P, et al: Regulation of rat liver apolipoprotein A-I, apolipoprotein A-II and acyl-coenzyme A oxidase gene expression by fibrates and dietary fatty acids. Eur J Biochem 1995; 232: 179–187.

    Article  CAS  Google Scholar 

  13. Marx N, Sukhova GK, Collins T, Libby P, Plutzky J : PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 1999; 99: 3125–3131.

    Article  CAS  Google Scholar 

  14. Shu H, Wong B, Zhou G, et al: Activation of PPARalpha or gamma reduces secretion of matrix metalloproteinase 9 but not interleukin 8 from human monocytic THP-1 cells. Biochem Biophys Res Commun 2000; 267: 345–349.

    Article  CAS  Google Scholar 

  15. Neve BP, Corseaux D, Chinetti G, et al: PPARalpha agonists inhibit tissue factor expression in human monocytes and macrophages. Circulation 2001; 103: 207–212.

    Article  CAS  Google Scholar 

  16. Chinetti G, Griglio S, Antonucci M, et al: Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 1998; 273: 25573–25580.

    Article  CAS  Google Scholar 

  17. Duez H, Chao YS, Hernandez M, et al: Reduction of atherosclerosis by the peroxisome proliferator−activated receptor alpha agonist fenofibrate in mice. J Biol Chem 2002; 277: 48051–48057.

    Article  CAS  Google Scholar 

  18. Fu T, Kashireddy P, Borensztajn J : The peroxisome-proliferator−activated receptor alpha agonist ciprofibrate severely aggravates hypercholesterolaemia and accelerates the development of atherosclerosis in mice lacking apolipoprotein E. Biochem J 2003; 373: 941–947.

    Article  CAS  Google Scholar 

  19. Fu T, Mukhopadhyay D, Davidson NO, Borensztajn J : The peroxisome proliferator−activated receptor alpha (PPARalpha) agonist ciprofibrate inhibits apolipoprotein B mRNA editing in low density lipoprotein receptor−deficient mice: effects on plasma lipoproteins and the development of atherosclerotic lesions. J Biol Chem 2004; 279: 28662–28669.

    Article  CAS  Google Scholar 

  20. Tordjman K, Bernal-Mizrachi C, Zemany L, et al: PPARalpha deficiency reduces insulin resistance and atherosclerosis in apoE-null mice. J Clin Invest 2001; 107: 1025–1034.

    Article  CAS  Google Scholar 

  21. Ericsson CG, Hamsten A, Nilsson J, Grip L, Svane B, de Faire U : Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Lancet 1996; 347: 849–853.

    Article  CAS  Google Scholar 

  22. Group TBS: Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the Bezafibrate Infarction Prevention (BIP) study. Circulation 2000; 102: 21–27.

  23. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J : Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 1993; 92: 883–893.

    Article  CAS  Google Scholar 

  24. Paigen B, Morrow A, Brandon C, Mitchell D, Holmes P : Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 1985; 57: 65–73.

    Article  CAS  Google Scholar 

  25. Paigen B, Morrow A, Holmes PA, Mitchell D, Williams RA : Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis 1987; 68: 231–240.

    Article  CAS  Google Scholar 

  26. Yagyu H, Kitamine T, Osuga J, et al: Absence of ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous xanthomatosis in mice with congenital hyperlipidemia. J Biol Chem 2000; 275: 21324–21330.

    Article  CAS  Google Scholar 

  27. Usui S, Hara Y, Hosaki S, Okazaki M : A new on-line dual enzymatic method for simultaneous quantification of cholesterol and triglycerides in lipoproteins by HPLC. J Lipid Res 2002; 43: 805–814.

    CAS  PubMed  Google Scholar 

  28. Kako Y, Huang LS, Yang J, Katopodis T, Ramakrishnan R, Goldberg IJ : Streptozotocin-induced diabetes in human apolipoprotein B transgenic mice. Effects on lipoproteins and atherosclerosis. J Lipid Res 1999; 40: 2185–2194.

    CAS  PubMed  Google Scholar 

  29. van Vlijmen BJ, Rohlmann A, Page ST, et al: An extrahepatic receptor−associated protein−sensitive mechanism is involved in the metabolism of triglyceride-rich lipoproteins. J Biol Chem 1999; 274: 35219–35226.

    Article  CAS  Google Scholar 

  30. Livak KJ, Schmittgen TD : Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  31. Frick MH, Elo O, Haapa K, et al: Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 1987; 317: 1237–1245.

    Article  CAS  Google Scholar 

  32. Rubins HB, Robins SJ, Collins D, et al: Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 1999; 341: 410–418.

    Article  CAS  Google Scholar 

  33. Keech A, Simes RJ, Barter P, et al: Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 2005; 366: 1849–1861.

    Article  CAS  Google Scholar 

  34. Li L, Beauchamp MC, Renier G : Peroxisome proliferator−activated receptor alpha and gamma agonists upregulate human macrophage lipoprotein lipase expression. Atherosclerosis 2002; 165: 101–110.

    Article  CAS  Google Scholar 

  35. Peters JM, Hennuyer N, Staels B, et al: Alterations in lipoprotein metabolism in peroxisome proliferator−activated receptor alpha-deficient mice. J Biol Chem 1997; 272: 27307–27312.

    Article  CAS  Google Scholar 

  36. Berger J, Moller DE : The mechanisms of action of PPARs. Annu Rev Med 2002; 53: 409–435.

    Article  CAS  Google Scholar 

  37. Shimada M, Ishibashi S, Inaba T, et al: Suppression of diet-induced atherosclerosis in low density lipoprotein receptor knockout mice overexpressing lipoprotein lipase. Proc Natl Acad Sci U S A 1996; 93: 7242–7246.

    Article  CAS  Google Scholar 

  38. Yamauchi T, Kamon J, Waki H, et al: Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem 2003; 278: 2461–2468.

    Article  CAS  Google Scholar 

  39. Okamoto Y, Kihara S, Ouchi N, et al: Adiponectin reduces atherosclerosis in apolipoprotein E−deficient mice. Circulation 2002; 106: 2767–2770.

    Article  CAS  Google Scholar 

  40. Guerre-Millo M, Gervois P, Raspe E, et al: Peroxisome proliferator−activated receptor alpha activators improve insulin sensitivity and reduce adiposity. J Biol Chem 2000; 275: 16638–16642.

    Article  CAS  Google Scholar 

  41. Kim JI, Tsujino T, Fujioka Y, Saito K, Yokoyama M : Bezafibrate improves hypertension and insulin sensitivity in humans. Hypertens Res 2003; 26: 307–313.

    Article  CAS  Google Scholar 

  42. Tenenbaum A, Motro M, Fisman EZ, et al: Peroxisome proliferator−activated receptor ligand bezafibrate for prevention of type 2 diabetes mellitus in patients with coronary artery disease. Circulation 2004; 109: 2197–2202.

    Article  CAS  Google Scholar 

  43. Chinetti G, Lestavel S, Bocher V, et al: PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001; 7: 53–58.

    Article  CAS  Google Scholar 

  44. Chinetti G, Fruchart JC, Staels B : Peroxisome proliferator−activated receptors: new targets for the pharmacological modulation of macrophage gene expression and function. Curr Opin Lipidol 2003; 14: 459–468.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Division of Endocrinology and Metabolism, Jichi Medical University School of Medicine, Shimotsuke, Japan

    Toshihiro Inaba, Hiroaki Yagyu, Naoki Itabashi, Fumiko Tazoe, Nobuya Fujita, Shu-ichi Nagashima, Koji Okada & Shun Ishibashi

  2. Department of General Education, Laboratory of Chemistry, Tokyo Medical and Dental University, Chiba, Japan

    Mitsuyo Okazaki

  3. Division of Stem Cell Regulation, Center of Molecular Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan

    Yusuke Furukawa

Authors
  1. Toshihiro Inaba
    View author publications

    Search author on:PubMed Google Scholar

  2. Hiroaki Yagyu
    View author publications

    Search author on:PubMed Google Scholar

  3. Naoki Itabashi
    View author publications

    Search author on:PubMed Google Scholar

  4. Fumiko Tazoe
    View author publications

    Search author on:PubMed Google Scholar

  5. Nobuya Fujita
    View author publications

    Search author on:PubMed Google Scholar

  6. Shu-ichi Nagashima
    View author publications

    Search author on:PubMed Google Scholar

  7. Koji Okada
    View author publications

    Search author on:PubMed Google Scholar

  8. Mitsuyo Okazaki
    View author publications

    Search author on:PubMed Google Scholar

  9. Yusuke Furukawa
    View author publications

    Search author on:PubMed Google Scholar

  10. Shun Ishibashi
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Shun Ishibashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inaba, T., Yagyu, H., Itabashi, N. et al. Cholesterol Reduction and Atherosclerosis Inhibition by Bezafibrate in Low-Density Lipoprotein Receptor Knockout Mice. Hypertens Res 31, 999–1005 (2008). https://doi.org/10.1291/hypres.31.999

Download citation

  • Received: 05 July 2007

  • Accepted: 19 December 2007

  • Issue date: 01 May 2008

  • DOI: https://doi.org/10.1291/hypres.31.999

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • fibrates
  • cholesterol
  • atherosclerosis
  • lipoproteins
  • receptor

This article is cited by

  • RETRACTED ARTICLE: pNaKtide Attenuates Steatohepatitis and Atherosclerosis by Blocking Na/K-ATPase/ROS Amplification in C57Bl6 and ApoE Knockout Mice Fed a Western Diet

    • Komal Sodhi
    • Krithika Srikanthan
    • Joseph I. Shapiro

    Scientific Reports (2017)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited