Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Angiotensin II Increases Expression of IP-10 and the Renin-Angiotensin System in Endothelial Cells
Download PDF
Download PDF
  • Original Article
  • Published: 01 June 2008

Angiotensin II Increases Expression of IP-10 and the Renin-Angiotensin System in Endothelial Cells

  • Noriko Ide1,
  • Tetsuaki Hirase1,
  • Ai Nishimoto-Hazuku1,
  • Yuji Ikeda1 &
  • …
  • Koichi Node1 

Hypertension Research volume 31, pages 1257–1267 (2008)Cite this article

  • 1708 Accesses

  • Metrics details

Abstract

Angiotensin II promotes vascular inflammation, which plays important roles in vascular injury. In this study, we found that angiotensin II-stimulated human endothelial cells increased the release of a CXC chemokine, IP-10, according to an antibody array. IP-10 expression was higher in the endothelium of coronary blood vessels in mice infused with angiotensin II than in control. Quantitative real-time PCR analysis revealed that angiotensin II significantly increased IP-10 mRNA expression compared to control. Pretreatment with valsartan, but not with PD123319, blocked angiotensin II-induced IP-10 mRNA expression. IP-10 levels in conditioned media detected by ELISA increased in response to angiotensin II compared to control, which was blocked by the pretreatment with valsartan. These data indicate that angiotensin II stimulates IP-10 production from endothelial cells via angiotensin II type 1 receptors. In endothelial cells, IP-10 significantly increased mRNA expression of renin, angiotensin-converting enzyme, and angiotensinogen. IP-10 also increased angiotensin II levels in conditioned media compared to control. Angiotensin II significantly increased mRNA expression of renin, angiotensin converting enzyme and angiotensinogen, which was blocked by neutralization of IP-10 with antibody in endothelial cells. IP-10 neutralization with antibody blocked angiotensin II-induced apoptosis and cell senescence in endothelial cells. These data indicate that IP-10 is involved not only in leukocyte-endothelial interaction but also in the circuit of endothelial renin-angiotensin system activation that potentially promotes atherosclerosis.

Similar content being viewed by others

Pleiotropic activation of endothelial function by angiotensin II receptor blockers is crucial to their protective anti-vascular remodeling effects

Article Open access 13 June 2022

Aberrant expression of miR-133a in endothelial cells inhibits angiogenesis by reducing pro-angiogenic but increasing anti-angiogenic gene expression

Article Open access 30 August 2022

Characterization of a murine model of endothelial dysfunction induced by chronic intraperitoneal administration of angiotensin II

Article Open access 27 October 2021

Article PDF

References

  1. Ruiz-Ortega M, Lorenzo O, Rupérez M, et al: Role of the renin-angiotensin system in vascular diseases: expanding the field. Hypertension 2001; 38: 1382–1387.

    Article  CAS  PubMed  Google Scholar 

  2. Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J : Inflammation and angiotensin II. Int J Biochem Cell Biol 2003; 35: 881–900.

    Article  CAS  PubMed  Google Scholar 

  3. Lavoie JL, Sigmund CD : Minireview: overview of the renin-angiotensin system—an endocrine and paracrine system. Endocrinology 2003; 144: 2179–2183.

    Article  CAS  PubMed  Google Scholar 

  4. Paul M, Poyan Mehr A, Kreutz R : Physiology of local renin-angiotensin systems. Physiol Rev 2006; 86: 747–803.

    Article  CAS  PubMed  Google Scholar 

  5. Schmidt-Ott KM, Kagiyama S, Phillips MI : The multiple actions of angiotensin II in atherosclerosis. Regul Pept 2000; 93: 65–77.

    Article  CAS  PubMed  Google Scholar 

  6. Charo IF, Ransohoff RM : The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006; 354: 610–621.

    Article  CAS  PubMed  Google Scholar 

  7. Weber C, Schober A, Zernecke A : Chemokines: key regulators of mononuclear cell recruitment in atherosclerotic vascular disease. Arterioscler Thromb Vasc Biol 2004; 24: 1997–2008.

    Article  CAS  PubMed  Google Scholar 

  8. Braunersreuther V, Mach F, Steffens S : The specific role of chemokines in atherosclerosis. Thromb Haemost 2007; 97: 714–721.

    Article  CAS  PubMed  Google Scholar 

  9. Reape TJ, Groot PH : Chemokines and atherosclerosis. Atherosclerosis 1999; 147: 213–225.

    Article  CAS  PubMed  Google Scholar 

  10. Shin WS, Szuba A, Rockson SG : The role of chemokines in human cardiovascular pathology: enhanced biological insights. Atherosclerosis 2002; 160: 91–102.

    Article  CAS  PubMed  Google Scholar 

  11. Ruiz-Ortega M, Bustos C, Hernandez-Presa MA, Lorenzo O, Plaza JJ, Egido J : Angiotensin II participates in mononuclear cell recruitment in experimental immune complex nephritis through nuclear factor-kappa B activation and monocyte chemoattractant protein-1 synthesis. J Immunol 1998; 161: 430–439.

    CAS  PubMed  Google Scholar 

  12. Hernández-Presa M, Bustos C, Ortego M, Tuñon J, Ruiz-Ortega M, Egido J : Angiotensin-converting enzyme inhibition prevents arterial nuclear factor-κB activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis. Circulation 1997; 95: 1532–1541.

    Article  PubMed  Google Scholar 

  13. Chen XL, Tummala PE, Olbrych MT, Alexander RW, Medford RM : Angiotensin II induces monocyte chemoattractant protein-1 expression in rat vascular smooth muscle cells. Circ Res 1998; 83: 952–959.

    Article  CAS  PubMed  Google Scholar 

  14. Han Y, Runge MS, Brasier AR : Angiotensin II induces interleukin-6 transcriptation in vascular smooth muscle cells through pleiotropic activation of nuclear factor-kappa B transcriptation factors. Circ Res 1999; 84: 695–703.

    Article  CAS  PubMed  Google Scholar 

  15. Schieffer B, Schieffer E, Hilfiker-Kleiner D, et al: Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: potential implications for inflammation and plaque instability. Criculation 2000; 101: 1372–1378.

    Article  CAS  Google Scholar 

  16. Ito T, Ikeda U, Yamamoto K, Shimada K : Regulation of interleukin-8 expression by HMG-CoA reductase inhibitors in human vascular smooth muscle cells. Atherosclerosis 2002; 165: 51–55.

    Article  CAS  PubMed  Google Scholar 

  17. Schmeisser A, Soehnlein O, Illmer T, et al: ACE inhibition lowers angiotensin II-induced chemokine expression by reduction of NF-κB activity and AT1 receptor expression. Biochem Biophys Res Commun 2004; 325: 532–540.

    Article  CAS  PubMed  Google Scholar 

  18. Edgell CJ, McDonald CC, Graham JB : Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci U S A 1983; 80: 3734–3737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mach F, Sauty A, Iarossi AS, et al: Differential expression of three T lymphcyte-activating CXC chemokines by human atheroma-associated cell. J Clin Invest 1999; 104: 1041–1050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Luster AD, Ravetch JV : Biochemical characterization of a gamma interferon-inducible cytokine (IP-10). J Exp Med 1987; 166: 1084–1097.

    Article  CAS  PubMed  Google Scholar 

  21. García-López MA, Sánchez-Madrid F, Rodríguez-Frade JM, et al: CXCR3 chemokine receptor distribution in normal and inflamed tissues: expression on activated lymphocytes, endothelial cells, and dendritic cells. Lab Invest 2001; 81: 409–418.

    Article  PubMed  Google Scholar 

  22. Bonecchi R, Bianchi G, Bordignon PP, et al: Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med 1998; 187: 129–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hillyer P, Mordelet E, Flynn G, Male D : Chemokines, chemokine receptors and adhesion molecules on different human endothelia: discriminating the tissue-specific functions that affect leucocyte migration. Clin Exp Immunol 2003; 134: 431–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Romagnani P, Annunziato F, Lasagni L, et al: Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J Clin Invest 2001; 107: 53–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hirase T, Kawashima S, Wong E, et al: Regulation of tight junction permeability and occuludin phosphorylation by RhoA-p160ROCK-dependent and -independent mechanisms. J Biol Chem 2001; 276: 10423–10431.

    Article  CAS  PubMed  Google Scholar 

  26. Fenton M, Barker S, Kurz DJ, Erusalimsky JD : Cellular senescence after single and repeated balloon catheter denudations of rabbit carotid arteries. Arterioscler Thromb Vasc Biol 2001; 21: 220–226.

    Article  CAS  PubMed  Google Scholar 

  27. Bonacchi A, Romagnani P, Romanelli RG, et al: Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J Biol Chem 2001; 276: 9945–9954.

    Article  CAS  PubMed  Google Scholar 

  28. Shahabuddin S, Ji R, Wang P, et al: CXCR3 chemokine receptor-induced chemotaxis in human airway epithelial cells: role of p38 MAPK and PI3K signaling pathways. Am J Physiol Cell Physiol 2006; 291: C34–C39.

    Article  CAS  PubMed  Google Scholar 

  29. Taub DD, Lloyd AR, Conlon K, et al: Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J Exp Med 1993; 177: 1809–1814.

    Article  CAS  PubMed  Google Scholar 

  30. Touyz RM, Schiffrin EL : Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 2000; 52: 639–672.

    CAS  PubMed  Google Scholar 

  31. Kudoh S, Komuro I, Mizuno T, et al: Angiotensin II stimulates c-Jun NH2-terminal kinase in cultured cardiac myocytes of neonatal rats. Circ Res 1997; 80: 139–146.

    Article  CAS  PubMed  Google Scholar 

  32. Akishita M, Nagai K, Xi H, et al: Renin-angiotensin system modulates oxidative stress-induced endothelial cell apoptosis in rats. Hypertension 2005; 45: 1188–1193.

    Article  CAS  PubMed  Google Scholar 

  33. Wassmann S, Czech T, Eickels M, Fleming I, Böhm M, Nickenig G : Inhibition of diet-induced atherosclerosis and endothelial dysfunction in apolipoprotein E/angiotensin II type 1A receptor double-knockout mice. Circulation 2004; 110: 3062–3067.

    Article  CAS  PubMed  Google Scholar 

  34. Candido R, Allen TJ, Lassila M, et al: Irbesartan but not amlodipine suppresses diabetes-associated atherosclerosis. Circulation 2004; 109: 1536–1542.

    Article  CAS  PubMed  Google Scholar 

  35. Mateo T, Abu Nabah YN, Abu Taha M, et al: Angiotensin II-induced mononuclear leukocyte interactions with arteriolar and venular endothelium are mediated by the release of different CC chemokines. J Immunol 2006; 176: 5577–5586.

    Article  CAS  PubMed  Google Scholar 

  36. Tamassia N, Calzetti F, Ear T, et al: Molecular mechanisms underlying the synergistic induction of CXCL10 by LPS and IFN-γ in human neutrophils. Eur J Immunol 2007; 37: 2627–2634.

    Article  CAS  PubMed  Google Scholar 

  37. Suzuki Y, Gómez-Guerrero C, Shirato I, et al: Susceptibility to T cell-mediated injury in immune complex disease is linked to local activation of renin-angiotensin system: the role of NF-AT pathway. J Immunol 2002; 169: 4136–4146.

    Article  CAS  PubMed  Google Scholar 

  38. Veillard NR, Steffens S, Pelli G, et al: Differential influence of chemokine receptors CCR2 and CXCR3 in development of atherosclerosis in vivo. Circulation 2005: 112: 870–878.

    Article  CAS  PubMed  Google Scholar 

  39. Malhotra R, Sadoshima J, Brosius FC III, Izumo S : Mechanical stretch and angiotensin II differentially upregulate the renin-angiotensin system in cardiac myocytes in vitro. Circ Res 1999; 85: 137–146.

    Article  CAS  PubMed  Google Scholar 

  40. Bader M, Peters J, Baltatu O, Muller DN, Luft FC, Ganten D : Tissue renin-angiotensin systems: new insights from experimental animal models in hypertension research. J Mol Med 2001; 79: 76–102.

    Article  CAS  PubMed  Google Scholar 

  41. Kei K, Hiromi R, Michiko N, et al: Insulin-mediated regulation of the endothelial renin-angiotensin system and vascular cell growth. J Hypertens 2004; 22: 121–127.

    Article  Google Scholar 

  42. Xiao F, Puddefoot JR, Vinson GP : The expression of renin and the formation of angiotensinII in bovine aortic endothelial cells. J Endocrinol 2000; 164: 207–214.

    Article  CAS  PubMed  Google Scholar 

  43. Kukhtina NB, Arefieva TI, Krasnikova TL : Intracellular signal cascade in CD4+ T-lymphocyte migration stimulated by interferon-γ-inducible protein-10. Biochemistry 2005; 70: 652–656.

    CAS  PubMed  Google Scholar 

  44. Kouroumalis A, Nibbs RJ, Aptel H, Wright KL, Kolios G, Ward SG : The chemokines CXCL9, CXCL10, and CXCL11 differentially stimulate Gαi-independent signaling and actin responses in human intestinal myofibroblasts. J Immunol 2005; 175: 5403–5411.

    Article  CAS  PubMed  Google Scholar 

  45. Shen Q, Zhang R, Bhat NR : MAP kinase regulation of IP10/CXCL10 chemokine gene expression in microglial cells. Brain Res 2006; 1086: 9–16.

    Article  CAS  PubMed  Google Scholar 

  46. Indraccolo S, Pfeffer U, Minuzzo S, et al: Identification of genes selectively regulated by IFNs in endothelial cells. J Immunol 2007; 178: 1122–1135.

    Article  CAS  PubMed  Google Scholar 

  47. Bodnar RJ, Yates CC, Wells A : IP-10 blocks vascular endothelial growth factor-induced endothelial cell motility and tube formation via inhibition of calpain. Circ Res 2006; 98: 617–625.

    Article  CAS  PubMed  Google Scholar 

  48. Liu X, Shi Q, Sigmund CD : Interleukin-1beta attenuates renin gene expression via a mitogen-activated protein kinase kinase-extracellular signal-regulated kinase and signal transducer and activator of transcription 3-dependent mechanism in As4.1 cells. Endocrinology 2006; 147: 6011–6018.

    Article  CAS  PubMed  Google Scholar 

  49. Baumann H, Wang Y, Richards CD, Jones CA, Block TA, Gross KW : Endotoxin-induced renal inflammatory response. J Biol Chem 2000; 275: 22014–22019.

    Article  CAS  PubMed  Google Scholar 

  50. Brasier AR, Recinos A III, Eledrisi MS : Vascular inflammation and the renin-angiotensin system. Arterioscler Thromb Vasc Biol 2002; 22: 1257–1266.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Cardiovascular and Renal Medicine, Saga University Faculty of Medicine, Saga, Japan

    Noriko Ide, Tetsuaki Hirase, Ai Nishimoto-Hazuku, Yuji Ikeda & Koichi Node

Authors
  1. Noriko Ide
    View author publications

    Search author on:PubMed Google Scholar

  2. Tetsuaki Hirase
    View author publications

    Search author on:PubMed Google Scholar

  3. Ai Nishimoto-Hazuku
    View author publications

    Search author on:PubMed Google Scholar

  4. Yuji Ikeda
    View author publications

    Search author on:PubMed Google Scholar

  5. Koichi Node
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Tetsuaki Hirase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ide, N., Hirase, T., Nishimoto-Hazuku, A. et al. Angiotensin II Increases Expression of IP-10 and the Renin-Angiotensin System in Endothelial Cells. Hypertens Res 31, 1257–1267 (2008). https://doi.org/10.1291/hypres.31.1257

Download citation

  • Received: 23 November 2007

  • Accepted: 22 February 2008

  • Issue date: 01 June 2008

  • DOI: https://doi.org/10.1291/hypres.31.1257

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • angiotensin II
  • angiotensin II type 1 receptor
  • chemokine
  • IP-10
  • renin-angiotensin system

This article is cited by

  • Changes in aqueous concentrations of various cytokines after intravitreal bevacizumab and subtenon triamcinolone injection for diabetic macular edema

    • Seung-Young Yu
    • Dong Heun Nam
    • Dae Yeong Lee

    Graefe's Archive for Clinical and Experimental Ophthalmology (2018)

  • The expression of renin–angiotensin–aldosterone axis components in infantile hemangioma tissue and the impact of propranolol treatment

    • James R Dornhoffer
    • Ting Wei
    • Gresham T Richter

    Pediatric Research (2017)

  • Systemic candesartan reduces brain angiotensin II via downregulation of brain renin–angiotensin system

    • Nicolas Pelisch
    • Naohisa Hosomi
    • Masakazu Kohno

    Hypertension Research (2010)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited