Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
In Vivo Imaging of Renal Redox Status during Azelnidipine Treatment
Download PDF
Download PDF
  • Original Article
  • Published: 01 August 2008

In Vivo Imaging of Renal Redox Status during Azelnidipine Treatment

  • Aki Hirayama1,
  • Atsushi Ueda2,
  • Takaaki Oteki3,
  • Sohji Nagase4,
  • Kazumasa Aoyagi1 &
  • …
  • Akio Koyama5 

Hypertension Research volume 31, pages 1643–1650 (2008)Cite this article

  • 837 Accesses

  • Metrics details

Abstract

The effect of the calcium channel blocker azelnidipine on the redox status of a murine hypertension model was analyzed and imaged using in vivo low frequency electron paramagnetic resonance (EPR). A murine two kidney–one clip (2K1C) hypertension model was produced by a clipping of the right renal artery. The resulting hypertensive mice were treated with low-dose azelnidipine (1 mg/kg/d), with high-dose azelnidipine (3 mg/kg/d) or without azelnidipine (HT group). An EPR system equipped with a loop-gap resonator and an imaging system was employed. Redox status was evaluated as organ reducing activity measured by means of the decay rate (half-lives) of the spin probe 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (Carbamoyl- PROXYL). Four weeks after clipping the mice demonstrated hypertension as expected. After the additional 2 weeks of azelnidipine treatments, the Carbamoyl-PROXYL half-lives of the Low and High azelnidipine groups measured in the upper abdominal area were significantly shorter than those of the HT group, suggesting improvements in the reducing activity. The blood pressures of the three groups showed no significant differences at this time, and there was no correlation between the renal reducing activity and either blood pressure or serum creatinine values. EPR imaging studies revealed that the improvement in abdominal reducing activity was mainly recognized in the kidney but not in the liver. These results indicate that azelnidipine ameliorates renal redox status through an improvement in reducing activity independent of blood pressure control.

Similar content being viewed by others

Role of hypertension in kidney transplant recipients

Article 04 May 2021

Elucidating the complex interplay between chronic kidney disease and hypertension

Article 16 October 2024

Antihypertensive effects and safety of esaxerenone in patients with moderate kidney dysfunction

Article Open access 16 December 2020

Article PDF

References

  1. Halliwell B, Gutteridge JMC : Measurement of reactive species, in: Halliwell B, Gutteridge JMC (eds): Free Radicals in Biology and Medicine, 4th ed. London, Oxford Science Publications, 2007, pp 268–270.

    Google Scholar 

  2. Dikalov S, Griendling KK, Harrison DG : Measurement of reactive oxygen species in cardiovascular studies. Hypertension 2007; 49: 717–727.

    Article  CAS  PubMed  Google Scholar 

  3. Godfraind T : Antioxidant effects and the therapeutic mode of action of calcium channel blockers in hypertension and atherosclerosis. Philos Trans R Soc Lond B Biol Sci 2005; 360: 2259–2272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yokoyama H, Lin Y, Itoh O, et al: EPR imaging for in vivo analysis of the half-life of a nitroxide radical in the hippocampus and cerebral cortex of rats after epileptic seizures. Free Radic Biol Med 1999; 27: 442–448.

    Article  CAS  PubMed  Google Scholar 

  5. Togashi H, Matsuo T, Shinzawa H, et al: Ex vivo measurement of tissue distribution of a nitroxide radical after intravenous injection and its in vivo imaging using a rapid scan ESR-CT system. Magn Reson Imaging 2000; 18: 151–156.

    Article  CAS  PubMed  Google Scholar 

  6. Miura Y, Ozawa T : Noninvasive study of radiation-induced oxidative damage using in vivo electron spin resonance. Free Radic Biol Med 2000; 28: 854–859.

    Article  CAS  PubMed  Google Scholar 

  7. Hirayama A, Yoh K, Nagase S, et al: EPR imaging of reducing activity in Nrf2 transcriptional factor deficient mice. Free Radic Biol Med 2003; 34: 1236–1242.

    Article  CAS  PubMed  Google Scholar 

  8. Kuppusamy P, Li H, Ilangovan G, et al: Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res 2002; 62: 307–312.

    CAS  PubMed  Google Scholar 

  9. Ueda A, Nagase S, Yokoyama H, et al: Identification by an EPR technique of decreased mitochondrial reducing activity in puromycin aminonucleoside–induced nephrosis. Free Radic Biol Med 2002; 33: 1082.

    Article  CAS  PubMed  Google Scholar 

  10. Utsumi H, Yamada K : In vivo electron spin resonance–computed tomography/nitroxyl probe technique for noninvasive analysis of oxidative injuries. Arch Biochem Biophys 2003; 416: 1–8.

    Article  CAS  PubMed  Google Scholar 

  11. Yamada K, Yamamiya I, Utsumi H : In vivo detection of free radicals induced by diethylnitrosamine in rat liver tissue. Free Radic Biol Med 2006; 40: 2040–2046.

    Article  CAS  PubMed  Google Scholar 

  12. Hirayama A, Nagase S, Ueda A, et al: In vivo imaging of oxidative stress in ischemia-reperfusion renal injury using electron paramagnetic resonance. Am J Physiol Renal Physiol 2005; 288: F597–F603.

    Article  CAS  PubMed  Google Scholar 

  13. Ueda A, Yokoyama H, Nagase S, et al: In vivo temporal EPR imaging for estimating the kinetics of a nitroxide radical in the renal parenchyma and pelvis in rats. Magn Reson Imaging 2002; 20: 77–82.

    Article  CAS  PubMed  Google Scholar 

  14. Matsui T, Yamagishi S, Nakamura K, Inoue H : Azelnidipine, a new long-acting calcium-channel blocker, inhibits tumour necrosis factor-alpha–induced monocyte chemoattractant protein-1 expression in endothelial cells. J Int Med Res 2006; 34: 671–675.

    Article  CAS  PubMed  Google Scholar 

  15. Nakamura K, Yamagishi S, Inoue H : Unique atheroprotective property of azelnidipine, a dihydropyridine-based calcium antagonist. Med Hypotheses 2005; 65: 155–157.

    Article  CAS  PubMed  Google Scholar 

  16. Nakano K, Egashira K, Ohtani K, et al: Azelnidipine has anti-atherosclerotic effects independent of its blood pressure–lowering actions in monkeys and mice. Atherosclerosis 2008; 196: 172–179.

    Article  CAS  PubMed  Google Scholar 

  17. Wiesel P, Mazzolai L, Nussberger J, Pedrazzini T : Twokidney, one clip and one-kidney, one clip hypertension in mice. Hypertension 1997; 29: 1025–1030.

    Article  CAS  PubMed  Google Scholar 

  18. Griendling KK, FitzGerald GA : Oxidative stress and cardiovascular injury. Part II: Animal and human studies. Circulation 2003; 108: 2034–2040.

    Article  PubMed  Google Scholar 

  19. Papaharalambus CA, Griendling KK : Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med 2007; 17: 48–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cifuentes ME, Pagano PJ : Targeting reactive oxygen species in hypertension. Curr Opin Nephrol Hypertens 2006; 15: 179–186.

    Article  CAS  PubMed  Google Scholar 

  21. Taniyama Y, Griendling KK : Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 2003; 42: 1075–1081.

    Article  CAS  PubMed  Google Scholar 

  22. Escobales N, Crespo MJ : Oxidative-nitrosative stress in hypertension. Curr Vasc Pharmacol 2005; 3: 231–246.

    Article  CAS  PubMed  Google Scholar 

  23. Mason RP, Walter MF, Trumbore MW, Olmstead EG Jr, Mason PE : Membrane antioxidant effects of the charged dihydropyridine calcium antagonist amlodipine. J Mol Cell Cardiol 1999; 31: 275–281.

    Article  CAS  PubMed  Google Scholar 

  24. Berkels R, Egink G, Marsen TA, Bartels H, Roesen R, Klaus W : Nifedipine increases endothelial nitric oxide bioavailability by antioxidative mechanisms. Hypertension 2001; 37: 240–245.

    Article  CAS  PubMed  Google Scholar 

  25. Spieker LE, Flammer AJ, Lüscher TF : The vascular endothelium in hypertension. Handb Exp Pharmacol 2006; 176 Pt2: 249–283.

    Article  CAS  Google Scholar 

  26. Jinno T, Iwai M, Li Z, et al: Calcium channel blocker azelnidipine enhances vascular protective effects of AT1 receptor blocker olmesartan. Hypertension 2004; 43: 263–269.

    Article  CAS  PubMed  Google Scholar 

  27. Yamagishi S, Inagaki Y, Nakamura K, Imaizumi T : Azelnidipine, a newly developed long-acting calcium antagonist, inhibits tumor necrosis factor-alpha–induced interleukin-8 expression in endothelial cells through its anti-oxidative properties. J Cardiovasc Pharmacol 2004; 43: 724–730.

    Article  CAS  PubMed  Google Scholar 

  28. Lee MC, Shoji H, Miyazaki H, et al: Assessment of oxidative stress in the spontaneously hypertensive rat brain using electron spin resonance (ESR) imaging and in vivo L-band ESR. Hypertens Res 2004; 27: 485–492.

    Article  CAS  PubMed  Google Scholar 

  29. Sano T, Umeda F, Hashimoto T, Nawata H, Utsumi H : Oxidative stress measurement by in vivo electron spin resonance spectroscopy in rats with streptozotocin-induced diabetes. Diabetologia 1998; 41: 1355–1360.

    Article  CAS  PubMed  Google Scholar 

  30. Han JY, Takeshita K, Utsumi H : Noninvasive detection of hydroxyl radical generation in lung by diesel exhaust particles. Free Radic Biol Med 2001; 30: 516–525.

    Article  CAS  PubMed  Google Scholar 

  31. Okajo A, Matsumoto K, Mitchell JB, Krishna MC, Endo K : Competition of nitroxyl contrast agents as an in vivo tissue redox probe: comparison of pharmacokinetics by the bile flow monitoring (BFM) and blood circulating monitoring (BCM) methods using X-band EPR and simulation of decay profiles. Magn Reson Med 2006; 56: 422–431.

    Article  CAS  PubMed  Google Scholar 

  32. Yamada K, Inoue D, Matsumoto S, Utsumi H : In vivo measurement of redox status in streptozotocin-induced diabetic rat using targeted nitroxyl probes. Antioxid Redox Signal 2004; 6: 605–611.

    Article  CAS  PubMed  Google Scholar 

  33. Fuchs J, Groth N, Herrling T, Zimmer G : Electron paramagnetic resonance studies on nitroxide radical 2,2,5,5-tetramethyl-4-piperidin-1-oxyl (TEMPO) redox reactions in human skin. Free Radic Biol Med 1997; 22: 967–976.

    Article  CAS  PubMed  Google Scholar 

  34. Schafer FQ, Buettner GR : Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 2001; 30: 1191–1212.

    Article  CAS  PubMed  Google Scholar 

  35. Hirayama A, Yoh K, Ueda A, et al: Nrf2 deficiency intensifies early phase renal damage in streptozotocin-induced diabetic mice. Free Radic Biol Med 2004; 37: S134.

    Google Scholar 

  36. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C : Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 2007; 297: 842–857.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Center for Integrative Medicine, Tsukuba University of Technology, Tsukuba, Japan

    Aki Hirayama & Kazumasa Aoyagi

  2. Department of Nephrology, Namegata District General Hospital, Namegata, Japan

    Atsushi Ueda

  3. Center for Clinical Medicine and Research, International University of Health and Welfare, Nasushiobara, Japan

    Takaaki Oteki

  4. Nagase Naika Clinic, Moriya, Japan

    Sohji Nagase

  5. Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan

    Akio Koyama

Authors
  1. Aki Hirayama
    View author publications

    Search author on:PubMed Google Scholar

  2. Atsushi Ueda
    View author publications

    Search author on:PubMed Google Scholar

  3. Takaaki Oteki
    View author publications

    Search author on:PubMed Google Scholar

  4. Sohji Nagase
    View author publications

    Search author on:PubMed Google Scholar

  5. Kazumasa Aoyagi
    View author publications

    Search author on:PubMed Google Scholar

  6. Akio Koyama
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Aki Hirayama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirayama, A., Ueda, A., Oteki, T. et al. In Vivo Imaging of Renal Redox Status during Azelnidipine Treatment. Hypertens Res 31, 1643–1650 (2008). https://doi.org/10.1291/hypres.31.1643

Download citation

  • Received: 25 December 2007

  • Accepted: 27 April 2008

  • Issue date: 01 August 2008

  • DOI: https://doi.org/10.1291/hypres.31.1643

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • oxidative stress
  • imaging
  • azelnidipine
  • electron paramagnetic resonance
Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited