Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Candesartan Ameliorates Cardiac Dysfunction Observed in Angiotensin-Converting Enzyme 2-Deficient Mice
Download PDF
Download PDF
  • Original Article
  • Published: 01 October 2008

Candesartan Ameliorates Cardiac Dysfunction Observed in Angiotensin-Converting Enzyme 2-Deficient Mice

  • Kazuto Nakamura1,2,
  • Nobutaka Koibuchi3,
  • Hiroaki Nishimatsu4,
  • Yasutomi Higashikuni1,
  • Yasunobu Hirata1,
  • Kiyotaka Kugiyama2,
  • Ryozo Nagai1 &
  • …
  • Masataka Sata1,3,5 

Hypertension Research volume 31, pages 1953–1961 (2008)Cite this article

  • 1312 Accesses

  • Metrics details

Abstract

The renin-angiotensin (Ang) system plays a critical role in the regulation of blood pressure, body fluid, electrolyte homeostasis, and organ remodeling under physiological and pathological conditions. The carboxy-peptidase ACE2 is a homologue of angiotensin-converting enzyme (ACE). It has been reported that ACE2-deficient mice develop cardiac dysfunction with increased plasma levels of Ang II. However, the molecular mechanism by which genetic disruption of ACE2 results in heart dysfunction is not fully understood. Here, we generated mice with targeted disruption of the Ace2 gene and compared the cardiovascular function of ACE2–ly mice with that of their wild-type littermates. ACE2-deficient mice were viable and fertile and lacked any gross structural abnormalities. Echocardiographic study detected no functional difference between ACE2–ly and wild-type mice at 12 weeks of age. Twenty-four-week-old ACE2–ly mice displayed significantly enlarged hearts with impaired systolic and diastolic function. The Ang II level was elevated in the plasma and heart of ACE2–ly mice. Pharmacological blockade of Ang II type 1 receptor (AT1) with candesartan attenuated the development of cardiac dysfunction in ACE2–ly mice. These results suggest that enhanced stimulation of AT1 may play a role in the development of cardiac dysfunction observed in ACE2-deficient mice.

Similar content being viewed by others

A cell-based assay for rapid assessment of ACE2 catalytic function

Article Open access 29 August 2023

Aminoacylase-1 plays a key role in myocardial fibrosis and the therapeutic effects of 20(S)-ginsenoside Rg3 in mouse heart failure

Article 16 December 2021

Angiotensin converting enzyme 2 in patients with sepsis associate with comorbidities but neither with mortality nor with organ failure

Article Open access 23 April 2025

Article PDF

References

  1. Morimoto S, Yano Y, Maki K, Sawada K : Renal and vascular protective effects of telmisartan in patients with essential hypertension. Hypertens Res 2006; 29: 567–572.

    Article  CAS  PubMed  Google Scholar 

  2. Takada J, Ibayashi S, Ooboshi H, et al: Valsartan improves the lower limit of cerebral autoregulation in rats. Hypertens Res 2006; 29: 621–626.

    Article  CAS  PubMed  Google Scholar 

  3. Kim-Mitsuyama S, Izumi Y, Izumiya Y, Yoshida K, Yoshiyama M, Iwao H : Additive beneficial effects of the combination of a calcium channel blocker and an angiotensin blocker on a hypertensive rat-heart failure model. Hypertens Res 2004; 27: 771–779.

    Article  CAS  PubMed  Google Scholar 

  4. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ : A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captoprilinsensitive carboxypeptidase. J Biol Chem 2000; 275: 33238–33243.

    Article  CAS  PubMed  Google Scholar 

  5. Donoghue M, Hsieh F, Baronas E, et al: A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 2000; 87: E1–E9.

    Article  CAS  PubMed  Google Scholar 

  6. Crackower MA, Sarao R, Oudit GY, et al: Angiotensinconverting enzyme 2 is an essential regulator of heart function. Nature 2002; 417: 822–828.

    Article  CAS  PubMed  Google Scholar 

  7. De Mello WC, Danser AH : Angiotensin II and the heart: on the intracrine renin-angiotensin system. Hypertension 2000; 35: 1183–1188.

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki H, Kanno Y : Effects of candesartan on cardiovascular outcomes in Japanese hypertensive patients. Hypertens Res 2005; 28: 307–314.

    Article  CAS  PubMed  Google Scholar 

  9. Nakamura T, Kanno Y, Takenaka T, Suzuki H : An angiotensin receptor blocker reduces the risk of congestive heart failure in elderly hypertensive patients with renal insufficiency. Hypertens Res 2005; 28: 415–423.

    Article  CAS  PubMed  Google Scholar 

  10. Kai H, Kuwahara F, Tokuda K, Imaizumi T : Diastolic dysfunction in hypertensive hearts: roles of perivascular inflammation and reactive myocardial fibrosis. Hypertens Res 2005; 28: 483–490.

    Article  CAS  PubMed  Google Scholar 

  11. Shibasaki Y, Nishiue T, Masaki H, et al: Impact of the angiotensin II receptor antagonist, losartan, on myocardial fibrosis in patients with end-stage renal disease: assessment by ultrasonic integrated backscatter and biochemical markers. Hypertens Res 2005; 28: 787–795.

    Article  CAS  PubMed  Google Scholar 

  12. Zisman LS, Keller RS, Weaver B, et al: Increased angiotensin-(1–7)–forming activity in failing human heart ventricles: evidence for upregulation of the angiotensin converting enzyme Homologue ACE2. Circulation 2003; 108: 1707–1712.

    Article  CAS  PubMed  Google Scholar 

  13. Averill DB, Ishiyama Y, Chappell MC, Ferrario CM : Cardiac angiotensin-(1–7) in ischemic cardiomyopathy. Circulation 2003; 108: 2141–2146.

    Article  CAS  PubMed  Google Scholar 

  14. Goulter AB, Goddard MJ, Allen JC, Clark KL : ACE2 gene expression is up-regulated in the human failing heart. BMC Med 2004; 2: 19.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gironacci MM, Adler-Graschinsky E, Pena C, Enero MA : Effects of angiotensin II and angiotensin-(1–7) on the release of [3H]norepinephrine from rat atria. Hypertension 1994; 24: 457–460.

    Article  CAS  PubMed  Google Scholar 

  16. Iyer SN, Ferrario CM, Chappell MC : Angiotensin-(1–7) contributes to the antihypertensive effects of blockade of the renin-angiotensin system. Hypertension 1998; 31: 356–361.

    Article  CAS  PubMed  Google Scholar 

  17. Gallagher PE, Chappell MC, Ferrario CM, Tallant EA : Distinct roles for ANG II and ANG-(1–7) in the regulation of angiotensin-converting enzyme 2 in rat astrocytes. Am J Physiol Cell Physiol 2006; 290: C420–C426.

    Article  CAS  PubMed  Google Scholar 

  18. Igase M, Kohara K, Nagai T, Miki T, Ferrario CM : Increased expression of angiotensin converting enzyme 2 in conjunction with reduction of neointima by angiotensin II type 1 receptor blockade. Hypertens Res 2008; 31: 553–559.

    Article  PubMed  Google Scholar 

  19. Agata J, Ura N, Yoshida H, et al: Olmesartan is an angiotensin II receptor blocker with an inhibitory effect on angiotensin-converting enzyme. Hypertens Res 2006; 29: 865–874.

    Article  CAS  PubMed  Google Scholar 

  20. Yamamoto K, Ohishi M, Katsuya T, et al: Deletion of angiotensin-converting enzyme 2 accelerates pressure overload–induced cardiac dysfunction by increasing local angiotensin II. Hypertension 2006; 47: 718–726.

    Article  CAS  PubMed  Google Scholar 

  21. Koibuchi N, Chin MT : CHF1/Hey2 plays a pivotal role in left ventricular maturation through suppression of ectopic atrial gene expression. Circ Res 2007; 100: 850–855.

    Article  CAS  PubMed  Google Scholar 

  22. Allred AJ, Chappell MC, Ferrario CM, Diz DI : Differential actions of renal ischemic injury on the intrarenal angiotensin system. Am J Physiol Renal Physiol 2000; 279: F636–F645.

    Article  CAS  PubMed  Google Scholar 

  23. Shoji M, Sata M, Fukuda D, et al: Temporal and spatial characterization of cellular constituents during neointimal hyperplasia after vascular injury: potential contribution of bone-marrow–derived progenitors to arterial remodeling. Cardiovasc Pathol 2004; 13: 306–312.

    Article  PubMed  Google Scholar 

  24. Fleming I : Signaling by the angiotensin-converting enzyme. Circ Res 2006; 98: 887–896.

    Article  CAS  PubMed  Google Scholar 

  25. Ye M, Flores G, Batlle D : Angiotensin II and angiotensin-(1–7)effects on free cytosolic sodium, intracellular pH, and the Na+-H+ antiporter in vascular smooth muscle. Hypertension 1996; 27: 72–78.

    Article  CAS  PubMed  Google Scholar 

  26. Huentelman MJ, Zubcevic J, Hernandez Prada JA et al: Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. Hypertension 2004; 44: 903–906.

    Article  CAS  PubMed  Google Scholar 

  27. Walters PE, Gaspari TA, Widdop RE : Angiotensin-(1–7) acts as a vasodepressor agent via angiotensin II type 2 receptors in conscious rats. Hypertension 2005; 45: 960–966.

    Article  CAS  PubMed  Google Scholar 

  28. Santos RA, Simoes e Silva AC, Maric C, et al: Angiotensin-(1–7) is an endogenous ligand for the G protein–coupled receptor Mas. Proc Natl Acad Sci U S A 2003; 100: 8258–8263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kostenis E, Milligan G, Christopoulos A, et al: G-protein–coupled receptor Mas is a physiological antagonist of the angiotensin II type 1 receptor. Circulation 2005; 111: 1806–1813.

    Article  CAS  PubMed  Google Scholar 

  30. Santos RA, Castro CH, Gava E, et al: Impairment of in vitro and in vivo heart function in angiotensin-(1–7) receptor MAS knockout mice. Hypertension 2006; 47: 996–1002.

    Article  CAS  PubMed  Google Scholar 

  31. Ferreira AJ, Santos RA : Cardiovascular actions of angiotensin-(1–7). Braz J Med Biol Res 2005; 38: 499–507.

    Article  CAS  PubMed  Google Scholar 

  32. Dostal DE, Baker KM : The cardiac renin-angiotensin system: conceptual, or a regulator of cardiac function? Circ Res 1999; 85: 643–650.

    Article  CAS  PubMed  Google Scholar 

  33. Chappell MC, Modrall JG, Diz DI, Ferrario CM : Novel aspects of the renal renin-angiotensin system: angiotensin-(1–7), ACE2 and blood pressure regulation. Contrib Nephrol 2004; 143: 77–89.

    Article  PubMed  Google Scholar 

  34. Ferrario CM, Trask AJ, Jessup JA : Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1–7) in regulation of cardiovascular function. Am J Physiol Heart Circ Physiol 2005; 289: H2281–H2290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chappel MC, Ferrario CM : ACE and ACE2: their role to balance the expression of angiotensin II and angiotensin-(1–7). Kidney Int 2006; 70: 8–10.

    Article  CAS  PubMed  Google Scholar 

  36. Brosnihan KB, Neves LA, Chappell MC : Does the angiotensin-converting enzyme (ACE)/ACE2 balance contribute to the fate of angiotensin peptides in programmed hypertension? Hypertension 2005; 46: 1097–1099.

    Article  CAS  PubMed  Google Scholar 

  37. Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM : Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neparilysin in angiotensin peptide metabolism. Biochem J 2004; 383: 45–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gurley SB, Allred A, Le TH, et al: Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J Clin Invest 2006; 116: 2218–2225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan

    Kazuto Nakamura, Yasutomi Higashikuni, Yasunobu Hirata, Ryozo Nagai & Masataka Sata

  2. Second Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuoh, Japan

    Kazuto Nakamura & Kiyotaka Kugiyama

  3. Department of Advanced Clinical Science and Therapeutics, University of Tokyo Graduate School of Medicine, Tokyo, Japan

    Nobutaka Koibuchi & Masataka Sata

  4. Department of Urology, University of Tokyo Graduate School of Medicine, Tokyo, Japan

    Hiroaki Nishimatsu

  5. Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan

    Masataka Sata

Authors
  1. Kazuto Nakamura
    View author publications

    Search author on:PubMed Google Scholar

  2. Nobutaka Koibuchi
    View author publications

    Search author on:PubMed Google Scholar

  3. Hiroaki Nishimatsu
    View author publications

    Search author on:PubMed Google Scholar

  4. Yasutomi Higashikuni
    View author publications

    Search author on:PubMed Google Scholar

  5. Yasunobu Hirata
    View author publications

    Search author on:PubMed Google Scholar

  6. Kiyotaka Kugiyama
    View author publications

    Search author on:PubMed Google Scholar

  7. Ryozo Nagai
    View author publications

    Search author on:PubMed Google Scholar

  8. Masataka Sata
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Masataka Sata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, K., Koibuchi, N., Nishimatsu, H. et al. Candesartan Ameliorates Cardiac Dysfunction Observed in Angiotensin-Converting Enzyme 2-Deficient Mice. Hypertens Res 31, 1953–1961 (2008). https://doi.org/10.1291/hypres.31.1953

Download citation

  • Received: 09 July 2008

  • Accepted: 04 August 2008

  • Issue date: 01 October 2008

  • DOI: https://doi.org/10.1291/hypres.31.1953

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • angiotensin-converting enzyme 2
  • angiotensin II
  • angiotensin II type 1 receptor
  • angiotensin-(1–7)
  • cardiac dysfunction

This article is cited by

  • Role of the ACE2/angiotensin1–7/Mas axis in the cardiovascular system

    • Masaru Iwai
    • Masatsugu Horiuchi

    Hypertension Research (2010)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited