Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Angiotensin II Regulates Cardiac Hypertrophy via Oxidative Stress but Not Antioxidant Enzyme Activities in Experimental Renovascular Hypertension
Download PDF
Download PDF
  • Original Article
  • Published: 01 February 2008

Angiotensin II Regulates Cardiac Hypertrophy via Oxidative Stress but Not Antioxidant Enzyme Activities in Experimental Renovascular Hypertension

  • Ariel H Polizio1,
  • Karina B Balestrasse1,
  • Gustavo G Yannarelli1,
  • Guillermo O Noriega1,
  • Susana Gorzalczany2,
  • Carlos Taira2 &
  • …
  • Maria L Tomaro1 

Hypertension Research volume 31, pages 325–334 (2008)Cite this article

  • 1332 Accesses

  • Metrics details

Abstract

The aim of this study was to provide new insights into the role of angiotensin II and arterial pressure in the regulation of antioxidant enzyme activities in a renovascular model of cardiac hypertrophy. For this purpose, aortic coarcted rats were treated with losartan or minoxidil for 7 days. Angiotensin II induced cardiac hypertrophy and oxidative stress via Nox4, p22phox and p47phox, which are components of the NAD(P)H oxidase. Antioxidant enzymes were regulated by arterial pressure and were not implicated in cardiac hypertrophy. Heme oxygenase-1, the rate-limiting enzyme in heme catabolism, behaved as a catalase and glutathione peroxidase, and is regulated by arterial pressure. In summary, the present report indicates that cardiac hypertrophy, induced by renovascular hypertension, depends on angiotensin II through reactive oxygen species and is not prevented by the action of antioxidant enzymes.

Similar content being viewed by others

Novel therapeutics for the treatment of hypertension and its associated complications: peptide- and nonpeptide-based strategies

Article 17 March 2021

20-HETE mediates Ang II-induced cardiac hypertrophy via ROS and Ca2+ signaling in H9c2 cells

Article Open access 17 January 2025

Renin-angiotensin-aldosterone system and its relation to hypertension

Article 28 May 2025

Article PDF

References

  1. Sawyer DB, Siwik DA, Xiao L, Pimentel DR, Singh K, Colucci WS : Role of oxidative stress in myocardial hypertrophy and failure. J Mol Cell Cardiol 2002; 34: 379–388.

    Article  CAS  PubMed  Google Scholar 

  2. Tsu S, Touyz RM : Reactive oxygen species and vascular remodelling in hypertension: still alive. Can J Cardiol 2006; 22: 947–951.

    Article  Google Scholar 

  3. Sowers JR : Hypertension, angiotensin II and oxidative stress. N Engl J Med 2002; 346: 1999–2001.

    Article  PubMed  Google Scholar 

  4. Touyz RM : Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension. What is the clinical significance? Hypertension 2004; 44: 248–252.

    Article  CAS  PubMed  Google Scholar 

  5. Touyz RM : Reactive oxygen species and angiotensin II signaling in vascular cells implications in cardiovascular disease. Braz J Med Biol Res 2004; 37: 1263–1273.

    Article  CAS  PubMed  Google Scholar 

  6. Tomaro ML, Batlle AMC : Bilirubin: its role in cytoprotection against oxidative stress. Int J Biochem Cel Biol 2002; 34: 216–220.

    Article  CAS  Google Scholar 

  7. Kikuchi G, Yoshida T, Noguchi M : Heme oxygenase and heme degradation. Biochem Biophys Res Commum 2005; 338: 558–567.

    Article  CAS  Google Scholar 

  8. Maines MD, Gibbs PEM : 30 some years of heme oxygenase: from a “molecular wrecking ball” to a “mesmerizing” trigger of cellular events. Biochem Biophys Res Commun 2005; 338: 568–577.

    Article  CAS  PubMed  Google Scholar 

  9. Maines MD : The heme oxygenase system: update 2005. Antiox Redox Signal 2005; 7: 1761–1766.

    Article  CAS  Google Scholar 

  10. Sindhu RK, Roberts CK, Ehdaie A, Zhan CD, Vaziri ND : Effects of aortic coarctation on aortic antioxidant enzymes and NADPH oxidase protein expression. Life Sci 2005; 76: 945–953.

    Article  CAS  PubMed  Google Scholar 

  11. Gironacci MM, Brosnihan KB, Ferrario CM, et al: Increased hypothalamic angiotensin-(1–7) levels in rats with aortic coarctation–induced hypertension. Peptides 2007; 28: 1580–1585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lai FM, Herzlinger H, Cervoni P : A comparison of cardiac alpha-adrenoceptor number and affinity between aorta-coarcted hypertensive and normotensive rats. Res Commun Mol Pathol Pharmacol 1984; 43: 55–65.

    CAS  Google Scholar 

  13. Polizio AH, Gorzalczany S, Taira C, Peña C : Aortic coarctation induces oxidative stress in rat tissues. Life Sci 2006; 79: 596–600.

    Article  CAS  PubMed  Google Scholar 

  14. Baker KM, Chernin MI, Wixson SK, Aceto JF : Renin-angiotensin system involvement in pressure overload cardiac hypertrophy in rats. Am J Physiol 1990; 259: H324–H332.

    CAS  PubMed  Google Scholar 

  15. Shimosawa T : Mechanical stress and humoral factors linked to the induction of oxidative stress. Hypertens Res 2006; 29: 643–644.

    Article  PubMed  Google Scholar 

  16. Ungvari Z, Csiszar A, Kaminski PM, Wolin MS, Koller A : Chronic high pressure–induced arterial oxidative stress. Involvement of protein kinase C–dependent NAD(P)H oxidase and local renin-angiotensin system. Am J Pathol 2004; 165: 219–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Paradis P, Dali-Youcef N, Paradis FW, Thibault G, Nemer M : Overexpression of angiotensin II type 1 receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci U S A 2000; 97: 931–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rojo-Ortega JM, Genest J : A method for production of experimental hypertension in rats. Can J Physiol Pharmacol 1968; 46: 883–885.

    Article  CAS  PubMed  Google Scholar 

  19. Chance B, Sies H, Boveris A : Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979; 59: 527–605.

    Article  CAS  PubMed  Google Scholar 

  20. Flohé L, Gunzler WA : Assays of glutathione peroxidase. Meth Enzymol 1984; 105: 114–121.

    Article  Google Scholar 

  21. Misra HP, Fridovich I : The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 1972; 247: 3170–3175.

    CAS  PubMed  Google Scholar 

  22. Anderson ME : Determination of glutathione and glutathione disulfide in biological samples. Meth Enzymol 1985; 113: 548–555.

    Article  CAS  Google Scholar 

  23. Buege A, Aust SD : Microsomal lipid peroxidation. Meth Enzymol 1978; 52: 302–310.

    Article  CAS  Google Scholar 

  24. Boveris A : Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Meth Enzymol 1984; 105: 429–435.

    Article  CAS  Google Scholar 

  25. Foresti R, Clark JE, Green CJ, Motterlini R : Thiol compounds interact with nitric oxide in regulating heme oxygenase-1 induction in endothelial cells. J Biol Chem 1997; 272: 18411–18417.

    Article  CAS  PubMed  Google Scholar 

  26. Ossola JO, Tomaro ML : Heme oxygenase induction by cadmium chloride: evidence for oxidative stress involvement. Toxicology 1995; 104: 141–147.

    Article  CAS  PubMed  Google Scholar 

  27. Llesuy SF, Tomaro ML : Heme oxygenase and oxidative stress. Evidence of involvement of bilirubin as physiological protector against oxidative damage. Biochim Biophys Acta 1994; 1223: 9–14.

    Article  CAS  PubMed  Google Scholar 

  28. Lowry HO, Rosebrough NJ, Farr AL, Randall RJ : Protein measurement with the Folin reagent. J Biol Chem 1951; 193: 265–275.

    CAS  PubMed  Google Scholar 

  29. Griendling KK, Sorescu D, Ushio-Fukai M : NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000; 86: 494–501.

    Article  CAS  PubMed  Google Scholar 

  30. Griendling KK, Ushio-Fukai M : Reactive oxygen species as mediators of angiotensin II signaling. Regul Peptides 2000; 91: 21–27.

    Article  CAS  Google Scholar 

  31. Zafari AM, Ushio-Fukai M, Akers M, et al: Role of NADH/NADPH oxidase–derived H2O2 in angiotensin II induced vascular hypertrophy. Hypertension 1998; 32: 488–495.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Griendling KK, Dikalova A, Owens GK, Taylor WR : Vascular hypertrophy in angiotensin II–induced hypertension is mediated by vascular smooth muscle cell–derived H2O2 . Hypertension 2005; 46: 732–737.

    Article  CAS  PubMed  Google Scholar 

  33. Ushio-Fukai M, Alexander RW, Akers M, Griendling KK : p38 mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem 1998; 273: 15022–15029.

    Article  CAS  PubMed  Google Scholar 

  34. Ushio-Fukai M, Alexander RW, Akers M, et al: Reactive oxygen species mediate the activation of Akt/ protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 1999; 274: 22699–22704.

    Article  CAS  PubMed  Google Scholar 

  35. Byrne JA, Grieve DJ, Bendall JK, et al: Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II–induced cardiac hypertrophy. Circ Res 2003; 93: 802–804.

    Article  CAS  PubMed  Google Scholar 

  36. Maytin M, Siwik DA, Ito M, et al: Pressure overload–induced myocardial hypertrophy in mice does not require gp91phox. Circulation 2004; 109: 1168–1171.

    Article  CAS  PubMed  Google Scholar 

  37. Takai S, Kirimura K, Jin D, et al: Significance of angiotensin II receptor blocker. lipophilicities and their protective effect against vascular remodeling. Hypertens Res 2005; 28: 593–600.

    Article  CAS  PubMed  Google Scholar 

  38. Tsilimingas N, Walter U, Förstermann U, et al: Effects of angiotensin II infusionon the expression and function of NAD(P)H oxidase and components of nitric Oxide/cGMP signaling. Circ Res 2002; 90: 58–65.

    Google Scholar 

  39. Johnson P : Antioxidant enzyme expression in health and disease: effects of exercise and hypertension. Comp Biochem Physiol C 2002; 133: 493–505.

    Article  Google Scholar 

  40. Polizio AH, Peña C : Effects of angiotensin II type 1 receptor blockade on the oxidative stress in spontaneously hypertensive rat tissues. Regul Peptides 2005; 128: 1–5.

    Article  CAS  Google Scholar 

  41. Vogt M, Bauer MKA, Ferrari D, Schulze-Osthoff K : Oxidative stress and hypoxia/reoxygenation trigger CD95 (APO-1/Fas) ligand expression in microglial cells. FEBS Lett 1998; 429: 67–72.

    Article  CAS  PubMed  Google Scholar 

  42. Csonka C, Pataki T, Kovacs P, et al: Effects of oxidative stress on the expression of antioxidative defense enzymes in spontaneously hypertensive rat hearts. Free Radic Biol Med 2000; 29: 612–619.

    Article  CAS  PubMed  Google Scholar 

  43. Binda D, Nicod L, Viollon-Abadie C : Strain difference (WKY, SPRD) in the hepatic antioxidant status in rat and effect of hypertension (SHR, DOCA). Ex vivo and in vitro data. Mol Cell Biochem 2001; 218: 139–146.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina

    Ariel H Polizio, Karina B Balestrasse, Gustavo G Yannarelli, Guillermo O Noriega & Maria L Tomaro

  2. Department of Pharmacology, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina

    Susana Gorzalczany & Carlos Taira

Authors
  1. Ariel H Polizio
    View author publications

    Search author on:PubMed Google Scholar

  2. Karina B Balestrasse
    View author publications

    Search author on:PubMed Google Scholar

  3. Gustavo G Yannarelli
    View author publications

    Search author on:PubMed Google Scholar

  4. Guillermo O Noriega
    View author publications

    Search author on:PubMed Google Scholar

  5. Susana Gorzalczany
    View author publications

    Search author on:PubMed Google Scholar

  6. Carlos Taira
    View author publications

    Search author on:PubMed Google Scholar

  7. Maria L Tomaro
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Maria L Tomaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polizio, A., Balestrasse, K., Yannarelli, G. et al. Angiotensin II Regulates Cardiac Hypertrophy via Oxidative Stress but Not Antioxidant Enzyme Activities in Experimental Renovascular Hypertension. Hypertens Res 31, 325–334 (2008). https://doi.org/10.1291/hypres.31.325

Download citation

  • Received: 03 July 2007

  • Accepted: 16 August 2007

  • Issue date: 01 February 2008

  • DOI: https://doi.org/10.1291/hypres.31.325

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • angiotensin II
  • antioxidant enzymes
  • arterial pressure
  • cardiac hypertrophy
  • renovascular hypertension

This article is cited by

  • Ellagic Acid Prevents Ca2+ Dysregulation and Improves Functional Abnormalities of Ventricular Myocytes via Attenuation of Oxidative Stress in Pathological Cardiac Hypertrophy

    • Bilge E. Yamasan
    • Tanju Mercan
    • Semir Ozdemir

    Cardiovascular Toxicology (2021)

  • Evolving concepts in the pathogenesis of uraemic cardiomyopathy

    • Xiaoliang Wang
    • Joseph I. Shapiro

    Nature Reviews Nephrology (2019)

  • Puerarin-7-O-glucuronide, a water-soluble puerarin metabolite, prevents angiotensin II-induced cardiomyocyte hypertrophy by reducing oxidative stress

    • Ning Hou
    • Bin Cai
    • Min-Sheng Chen

    Naunyn-Schmiedeberg's Archives of Pharmacology (2017)

  • Reduction of Rat Cardiac Hypertrophy by Osthol is Related to Regulation of Cardiac Oxidative Stress and Lipid Metabolism

    • Feng Zhou
    • Wen Zhong
    • Mei‐lin Xie

    Lipids (2012)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited