Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Pioglitazone, a Thiazolidinedione Derivative, Attenuates Left Ventricular Hypertrophy and Fibrosis in Salt-Sensitive Hypertension
Download PDF
Download PDF
  • Original Article
  • Published: 01 February 2008

Pioglitazone, a Thiazolidinedione Derivative, Attenuates Left Ventricular Hypertrophy and Fibrosis in Salt-Sensitive Hypertension

  • Minori Nakamoto1,
  • Yusuke Ohya1,
  • Tomoko Shinzato1,
  • Rieko Mano1,
  • Masanobu Yamazato1,
  • Atsushi Sakima1 &
  • …
  • Shuichi Takishita1 

Hypertension Research volume 31, pages 353–361 (2008)Cite this article

  • 1301 Accesses

  • Metrics details

Abstract

Thiazolidinediones, which stimulate peroxisome proliferator–activated receptor γ, have been shown to prevent cardiovascular injury. However, little is known about their effects on salt-sensitive hypertension. We thus investigated whether or not pioglitazone affects left ventricular (LV) hypertrophy in Dahl salt-sensitive rats, then compared its effects to those of an angiotensin II receptor blocker, candesartan. Rats were used at 16 weeks of age after they had been fed either a low-salt (0.3%; DSL) or high-salt (8%; DSH) diet for 10 weeks; some of the DSH rats were treated with pioglitazone (10 mg/kg/day) or candesartan (4 mg/kg/day). Both drugs decreased the elevated blood pressure in DSH rats, although it was still higher than in DSL rats. Both drugs decreased plasma insulin levels, but neither affected plasma glucose levels. The thiobarbituric acid reactive substance level in the LV was decreased by both drugs. LV hypertrophy evaluated by echocardiography in DSH rats was nearly normalized by both drugs, whereas only candesartan decreased LV diameter. In histological analysis, both drugs ameliorated LV fibrosis and myocardial cell hypertrophy. Both drugs decreased elevated gene expression levels of transforming growth factor-β1 and collagen type I, although the pioglitazone action was slightly modest. The metalloproteinase activity was increased in DSH rats, but both drugs decreased this level. Taken together, these findings indicate that pioglitazone reduced LV hypertrophy and fibrosis in salt-sensitive hypertension. Improvement in blood pressure, insulin level, and oxidative stress may be associated with this beneficial action of pioglitazone.

Similar content being viewed by others

Establishment of a HFpEF model using female Dahl salt-sensitive rats: a valuable tool for elucidating the pathophysiology of HFpEF in women

Article 28 November 2024

Upregulation of Piezo2 in the mesangial, renin, and perivascular mesenchymal cells of the kidney of Dahl salt-sensitive hypertensive rats and its reversal by esaxerenone

Article 21 February 2023

Comparison of the effects of renal denervation at early or advanced stages of hypertension on cardiac, renal, and adipose tissue pathology in Dahl salt-sensitive rats

Article Open access 15 February 2024

Article PDF

References

  1. Devereux RB, Wachtell K, Gerdts E, et al: Prognostic significance of left ventricular mass change during treatment of hypertension. JAMA 2004; 292: 2350–2356.

    Article  CAS  PubMed  Google Scholar 

  2. Gosse P : Left ventricular hypertrophy as a predictor of cardiovascular risk. J Hypertens Suppl 2005; 23: S27–S33.

    Article  CAS  PubMed  Google Scholar 

  3. Selvetella G, Hirsch E, Notte A, Tarone G, Lembo G : Adaptive and maladaptive hypertrophic pathways: points of convergence and divergence. Cardiovasc Res 2004; 63: 373–380.

    Article  CAS  PubMed  Google Scholar 

  4. Frey N, Katus HA, Olson EN, Hill JA : Hypertrophy of the heart: a new therapeutic target? Circulation 2004; 109: 1580–1589.

    Article  PubMed  Google Scholar 

  5. Rysa J, Leskinen H, Ilves M, Ruskoaho H : Distinct upregulation of extracellular matrix genes in transition from hypertrophy to hypertensive heart failure. Hypertension 2005; 45: 927–933.

    Article  PubMed  CAS  Google Scholar 

  6. Iwanaga Y, Aoyama T, Kihara Y, Onozawa Y, Yoneda T, Sasayama S : Excessive activation of matrix metalloproteinases coincides with left ventricular remodeling during transition from hypertrophy to heart failure in hypertensive rats. J Am Coll Cardiol 2002; 39: 1384–1391.

    Article  CAS  PubMed  Google Scholar 

  7. Ahmed MS, Oie E, Vinge LE, et al: Connective tissue growth factor—a novel mediator of angiotensin II–stimulated cardiac fibroblast activation in heart failure in rats. J Mol Cell Cardiol 2004; 36: 393–404.

    Article  CAS  PubMed  Google Scholar 

  8. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB : Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 1999; 277: C1–C9.

    Article  CAS  PubMed  Google Scholar 

  9. Polyakova V, Hein S, Kostin S, Ziegelhoeffer T, Schaper J : Matrix metalloproteinases and their tissue inhibitors in pressure-overloaded human myocardium during heart failure progression. J Am Coll Cardiol 2004; 44: 1609–1618.

    Article  CAS  PubMed  Google Scholar 

  10. Spinale FG : Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res 2002; 90: 520–530.

    Article  CAS  PubMed  Google Scholar 

  11. Sakata Y, Yamamoto K, Mano T, et al: Activation of matrix metalloproteinases precedes left ventricular remodeling in hypertensive heart failure rats: its inhibition as a primary effect of angiotensin-converting enzyme inhibitor. Circulation 2004; 109: 2143–2149.

    Article  CAS  PubMed  Google Scholar 

  12. Yamamoto K, Mano T, Yoshida J, et al: ACE inhibitor and angiotensin II type 1 receptor blocker differently regulate ventricular fibrosis in hypertensive diastolic heart failure. J Hypertens 2005; 23: 393–400.

    Article  CAS  PubMed  Google Scholar 

  13. Nagata K, Obata K, Xu J, et al: Mineralocorticoid receptor antagonism attenuates cardiac hypertrophy and failure in low-aldosterone hypertensive rats. Hypertension 2006; 47: 656–664.

    Article  CAS  PubMed  Google Scholar 

  14. Schiffrin EL, Amiri F, Benkirane K, Iglarz M, Diep QN : Peroxisome proliferator–activated receptors: vascular and cardiac effects in hypertension. Hypertension 2003; 42: 664–668.

    Article  CAS  PubMed  Google Scholar 

  15. Mukherjee R, Jow L, Croston GE, Paterniti JR Jr : Identification, characterization, and tissue distribution of human peroxisome proliferator–activated receptor (PPAR) isoforms PPARγ2 versus PPARγ1 and activation with retinoid X receptor agonists and antagonists. J Biol Chem 1997; 272: 8071–8076.

    Article  CAS  PubMed  Google Scholar 

  16. Ishibashi M, Egashira K, Hiasa K, et al: Antiinflammatory and antiarteriosclerotic effects of pioglitazone. Hypertension 2002; 40: 687–693.

    Article  CAS  PubMed  Google Scholar 

  17. Inoko M, Kihara Y, Morii I, Fujiwara H, Sasayama S : Transition from compensatory hypertrophy to dilated, failing left ventricles in Dahl salt-sensitive rats. Am J Physiol 1994; 267: H2471–H2482.

    CAS  PubMed  Google Scholar 

  18. Mizukami M, Hasegawa H, Kohro T, et al: Gene expression profile revealed different effects of angiotensin II receptor blockade and angiotensin-converting enzyme inhibitor on heart failure. J Cardiovasc Pharmacol 2003; 42: S1–S6.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao X, White R, Van Huysse J, Leenen FH : Cardiac hypertrophy and cardiac renin-angiotensin system in Dahl rats on high salt intake. J Hypertens 2000; 18: 1319–1326.

    Article  CAS  PubMed  Google Scholar 

  20. Yoshida J, Yamamoto K, Mano T, et al: AT1 receptor blocker added to ACE inhibitor provides benefits at advanced stage of hypertensive diastolic heart failure. Hypertension 2004; 43: 686–691.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou MS, Adam AG, Jaimes EA, Raij L : In salt-sensitive hypertension, increased superoxide production is linked to functional upregulation of angiotensin II. Hypertension 2003; 42: 945–951.

    Article  CAS  PubMed  Google Scholar 

  22. Guo P, Nishiyama A, Rahman M, et al: Contribution of reactive oxygen species to the pathogenesis of left ventricular failure in Dahl salt-sensitive hypertensive rats: effects of angiotensin II blockade. J Hypertens 2006; 24: 1097–1104.

    Article  CAS  PubMed  Google Scholar 

  23. Wake R, Kim-Mitsuyama S, Izumi Y, et al: Beneficial effect of candesartan on rat diastolic heart failure. J Pharmacol Sci 2005; 98: 37237–37239.

    Article  Google Scholar 

  24. Wu L, Wang R, De Champlain J, Wilson TW : Beneficial and deleterious effects of rosiglitazone on hypertension development in spontaneously hypertensive rats. Am J Hypertens 2004; 17: 749–756.

    Article  CAS  PubMed  Google Scholar 

  25. Wakino S, Hayashi K, Tatematsu S, et al: Pioglitazone lowers systemic asymmetric dimethylarginine by inducing dimethylarginine dimethylaminohydrolase in rats. Hypertens Res 2005; 28: 255–262.

    Article  CAS  PubMed  Google Scholar 

  26. Iglarz M, Touyz RM, Amiri F, Lavoie MF, Diep QN, Schiffrin EL : Effect of peroxisome proliferator–activated receptor-α and -γ activators on vascular remodeling in endothelin-dependent hypertension. Atheroscler Thromb Vasc Biol 2003; 23: 45–51.

    Article  CAS  Google Scholar 

  27. Iglarz M, Touyz RM, Viel EC, et al: Peroxisome proliferator–activated receptor-α and receptor-γ activators prevent cardiac fibrosis in mineralocorticoid-dependent hypertension. Hypertension 2003; 42: 737–743.

    Article  CAS  PubMed  Google Scholar 

  28. Benkirane K, Viel EC, Amiri F, Schiffrin EL : Peroxisome proliferator–activated receptor γ regulates angiotensin II–stimulated phosphatidylinositol 3-kinase and mitogen-activated protein kinase in blood vessels in vivo. Hypertension 2006; 47: 102–108.

    Article  CAS  PubMed  Google Scholar 

  29. Majithiya JB, Parmar AN, Trivedi CJ, Balaraman R : Effect of pioglitazone on L-NAME induced hypertension in diabetic rats. Vascul Pharmacol 2005; 43: 260–266.

    Article  CAS  PubMed  Google Scholar 

  30. Yosefy C, Magen E, Kiselevich A, et al: Rosiglitazone improves, while Glibenclamide worsens blood pressure control in treated hypertensive diabetic and dyslipidemic subjects via modulation of insulin resistance and sympathetic activity. J Cardiovasc Pharmacol 2004; 44: 215–222.

    Article  CAS  PubMed  Google Scholar 

  31. Derosa G, Cicero AFG, D'Angelo A : Thiazolidinedione effects on blood pressure in diabetic patients with metabolic syndrome treated with glimepiride. Hypertens Res 2005; 28: 917–924.

    Article  CAS  PubMed  Google Scholar 

  32. Ogihara T, Asano T, Ando K, et al: High-salt diet enhances insulin signaling and induces insulin resistance in Dahl salt-sensitive rats. Hypertension 2002; 40: 83–89.

    Article  CAS  PubMed  Google Scholar 

  33. Landsberg L : Insulin sensitivity in the pathogenesis of hypertension and hypertensive complications. Clin Exp Hypertens 1996; 18: 337–346.

    Article  CAS  PubMed  Google Scholar 

  34. Ryan MJ, Didion SP, Mathur S, Faraci FM, Sigmund CD : PPAR(gamma) agonist rosiglitazone improves vascular function and lowers blood pressure in hypertensive transgenic mice. Hypertension 2004; 43: 661–666.

    Article  CAS  PubMed  Google Scholar 

  35. Ishimitsu T, Kobayashi T, Honda T, et al: Protective effects of an angiotensin II receptor blocker and a long-acting calcium channel blocker against cardiovascular organ injuries in hypertensive patients. Hypertens Res 2005; 28: 351–359.

    Article  CAS  PubMed  Google Scholar 

  36. Yu HC, Burrell LM, Black MJ, et al: Salt induces myocardial and renal fibrosis in normotensive and hypertensive rats. Circulation 1998; 98: 2621–2628.

    Article  CAS  PubMed  Google Scholar 

  37. Cucoranu I, Clempus R, Dikalova A, et al: NAD(P)H oxidase 4 mediates transforming growth factor-β1–induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 2005; 97: 900–907.

    Article  CAS  PubMed  Google Scholar 

  38. Chen K, Chen J, Li D, Zhang X, Mehta JL : Angiotensin II regulation of collagen type I expression in cardiac fibroblasts: modulation by PPAR-γ ligand pioglitazone. Hypertension 2004; 44: 655–661.

    Article  CAS  PubMed  Google Scholar 

  39. Sugawara A, Takeuchi K, Uruno A, et al: Transcriptional suppression of type 1 angiotensin II receptor gene expression by peroxisome proliferator–activated receptor-gamma in vascular smooth muscle cells. Endocrinology 2001; 142: 3125–3134.

    Article  CAS  PubMed  Google Scholar 

  40. Takeda K, Ichiki T, Tokunou T, et al: Peroxisome proliferator–activated receptor gamma activators downregulate angiotensin II type 1 receptor in vascular smooth muscle cells. Circulation 2000; 102: 1834–1839.

    Article  CAS  PubMed  Google Scholar 

  41. Benkirane K, Amiri F, Diep QN, El Mabrouk M, Schiffrin EL : PPAR-gamma inhibits ANG II–induced cell growth via SHIP2 and 4E-BP1. Am J Physiol Heart Circ Physiol 2006; 290: H390–H397.

    Article  CAS  PubMed  Google Scholar 

  42. Poornima IG, Parikh P, Shannon RP : Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 2006; 98: 596–605.

    Article  CAS  PubMed  Google Scholar 

  43. Duan SZ, Ivashchenko CY, Russell MW, Milstone DS, Mortensen RM : Cardiomyocyte-specific knockout and agonist of peroxisome proliferator–activated receptor-gamma both induce cardiac hypertrophy in mice. Circ Res 2005; 97: 372–379.

    Article  CAS  PubMed  Google Scholar 

  44. Asakawa M, Takano H, Nagai T, et al: Peroxisome proliferator–activated receptor gamma plays a critical role in inhibition of cardiac hypertrophy in vitro and in vivo. Circulation 2002; 105: 1240–1246.

    Article  CAS  PubMed  Google Scholar 

  45. Sakai S, Miyauchi T, Irukayama-Tomobe Y, Ogata T, Goto K, Yamaguchi I : Peroxisome proliferator–activated receptor-gamma activators inhibit endothelin-1–related cardiac hypertrophy in rats. Clin Sci (Lond) 2002; 103 ( Suppl 48): 16S–20S.

    Article  CAS  Google Scholar 

  46. Guan Y, Hao C, Cha DR, et al: Thiazolidinediones expand body fluid volume through PPARgamma stimulation of ENaC-mediated renal salt absorption. Nat Med 2005; 11: 861–866.

    Article  CAS  PubMed  Google Scholar 

  47. Nesto RW, Bell D, Bonow RO, et al, American Heart Association, American Diabetes Association : Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Circulation 2003; 108: 2941–2948.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Cardiovascular Medicine, Nephrology and Neurology, School of Medicine, University of the Ryukyus, Okinawa, Japan

    Minori Nakamoto, Yusuke Ohya, Tomoko Shinzato, Rieko Mano, Masanobu Yamazato, Atsushi Sakima & Shuichi Takishita

Authors
  1. Minori Nakamoto
    View author publications

    Search author on:PubMed Google Scholar

  2. Yusuke Ohya
    View author publications

    Search author on:PubMed Google Scholar

  3. Tomoko Shinzato
    View author publications

    Search author on:PubMed Google Scholar

  4. Rieko Mano
    View author publications

    Search author on:PubMed Google Scholar

  5. Masanobu Yamazato
    View author publications

    Search author on:PubMed Google Scholar

  6. Atsushi Sakima
    View author publications

    Search author on:PubMed Google Scholar

  7. Shuichi Takishita
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Yusuke Ohya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamoto, M., Ohya, Y., Shinzato, T. et al. Pioglitazone, a Thiazolidinedione Derivative, Attenuates Left Ventricular Hypertrophy and Fibrosis in Salt-Sensitive Hypertension. Hypertens Res 31, 353–361 (2008). https://doi.org/10.1291/hypres.31.353

Download citation

  • Received: 04 January 2007

  • Accepted: 06 September 2007

  • Issue date: 01 February 2008

  • DOI: https://doi.org/10.1291/hypres.31.353

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • salt-sensitive hypertension
  • peroxisome proliferator–activated receptor γ
  • cardiac fibrosis
  • renin-angiotensin system

This article is cited by

  • Rethinking pioglitazone as a cardioprotective agent: a new perspective on an overlooked drug

    • Lorenzo Nesti
    • Domenico Tricò
    • Andrea Natali

    Cardiovascular Diabetology (2021)

  • Interplay between the renin-angiotensin system, the canonical WNT/β-catenin pathway and PPARγ in hypertension

    • Alexandre Vallée
    • Bernard L. Lévy
    • Jacques Blacher

    Current Hypertension Reports (2018)

  • Rosiglitazone attenuates activation of human Tenon’s fibroblasts induced by transforming growth factor -β1

    • Fang Fan
    • Yuehua Li
    • Huihui Chen

    Graefe's Archive for Clinical and Experimental Ophthalmology (2012)

  • Pioglitazone inhibits TGFβ induced keratocyte transformation to myofibroblast and extracellular matrix production

    • Hong-Wei Pan
    • Jin-Tang Xu
    • Jian-Su Chen

    Molecular Biology Reports (2011)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited