Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Upregulation of Interleukin-8/CXCL8 in Vascular Smooth Muscle Cells from Spontaneously Hypertensive Rats
Download PDF
Download PDF
  • Original Article
  • Published: 01 March 2008

Upregulation of Interleukin-8/CXCL8 in Vascular Smooth Muscle Cells from Spontaneously Hypertensive Rats

  • Hyo Young Kim1,
  • Young Jin Kang2,
  • In Hwan Song3,
  • Hyung Chul Choi2 &
  • …
  • Hee Sun Kim1 

Hypertension Research volume 31, pages 515–523 (2008)Cite this article

  • 2786 Accesses

  • 3 Altmetric

  • Metrics details

Abstract

Chemokines promote vascular inflammation and play a pathogenic role in the development and maintenance of hypertension. In the present study, the expression of the chemokine interleukin-8/CXCL8 (IL-8/CXCL8) was investigated in cultured vascular smooth muscle cells (VSMC) obtained from the thoracic aorta of spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). IL-8/CXCL8 expression in thoracic aorta tissue and VSMC in SHR were significantly higher than in WKY. However, the expression of CXCR1 mRNA in VSMC from WKY was higher than that in VSMC from SHR. Angiotensin II (Ang II) induced a higher level of IL-8/CXCL8 mRNA expression in VSMC from SHR than in VSMC from WKY. The time course of Ang II–induced IL-8/CXCL8 expression in VSMC from SHR correlated with those of Ang II–induced CXCL1 and Ang II type 1 (AT1) receptor expression, and the expression of IL-8/CXCL8 by Ang II was inhibited by the AT1 receptor antagonist losartan. The effect of Ang II on IL-8/CXCL8 expression was not dependent on nuclear factor-κB (NF-κB) activation, but was mediated by an extracellular signal–regulated kinase (ERK) signaling pathway. Although Ang II directly induced IL-8/CXCL8 expression, expression of Ang II–induced IL-8/CXCL8 decreased in VSMC transfected with heme oxygenase-1. These results suggest that IL-8/CXCL8 plays an important role in the pathogenesis of Ang II–induced hypertension and vascular lesions in SHR.

Similar content being viewed by others

Vascular smooth muscle-specific LRRC8A knockout ameliorates angiotensin II-induced cerebrovascular remodeling by inhibiting the WNK1/FOXO3a/MMP signaling pathway

Article 08 May 2024

Chronic infusion of ELABELA alleviates vascular remodeling in spontaneously hypertensive rats via anti-inflammatory, anti-oxidative and anti-proliferative effects

Article 08 March 2022

Vascular smooth muscle cells enhance immune/vascular interplay in a 3-cell model of vascular inflammation

Article Open access 23 September 2023

Article PDF

References

  1. Alexander RW : Hypertension and the pathogenesis of atherosclerosis. Hypertension 1995; 25: 155–161.

    Article  CAS  Google Scholar 

  2. Gerszten RE : Pleiotropic effects of chemokines in vascular lesion development. Artherioscler Thromb Vasc Biol 2002; 22: 528–529.

    Article  CAS  Google Scholar 

  3. Luster AD : Chemokines—chemotactic cytokines that mediate inflammation. N Engl J Med 1998; 338: 436–445.

    Article  CAS  Google Scholar 

  4. Spinetti G, Wang M, Monticone R, Zhang J, Zhao D, Lakatta EG : Rat aortic MCP-1 and its receptor CCR2 increase with age and alter vascular smooth muscle cell function. Arterioscler Thromb Vasc Biol 2004; 24: 1397–1402.

    Article  CAS  Google Scholar 

  5. Ishibashi M, Hiasa KI, Zhao Q, et al: Critical role of monocyte chemoattractant protein-1 receptor CCR2 on monocyte in hypertension-induced vascular inflammation and remodeling. Circ Res 2004; 94: 1203–1210.

    Article  CAS  Google Scholar 

  6. Capers QI, Alexander RW, Lou P, et al: Monocyte chemoattractant protein-1 expression in aortic tissues of hypertensive rats. Hypertension 1997; 30: 1397–1402.

    Article  CAS  Google Scholar 

  7. Parissis JT, Korovesis S, Giazitzoglou E, Kalivas P, Katritsis D : Plasma profile of peripheral monocyte-related inflammatory markers in patients with arterial hypertension. Correlations with plasma endothelin-1. Int J Cardiol 2002; 83: 13–21.

    Article  Google Scholar 

  8. Zhang Y, Griendling KK, Dikalova A, Owens GK, Talyor WR : Vascular hypertrophy in angiotensin II–induced hypertension is mediated by vascular smooth muscle cell–derived H2O2 . Hypertension 2005; 46: 732–737.

    Article  CAS  Google Scholar 

  9. Rodríguez-Iturbe B, Vaziri ND, Herrera-Acosta J, Johnson RJ : Oxidative stress, renal infiltration of immune cells and salt-sensitive hypertension: all for one and one for all. Am J Physiol 2004; 286: F606–F616.

    Google Scholar 

  10. Chen XL, Tummala PE, Olbrych MT, Alexander RW, Medford RM : Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circ Res 1998; 83: 952–959.

    Article  CAS  Google Scholar 

  11. Xie QY, Sun M, Yang TL, Sun ZL : Losartan reduces monocyte chemoattractant protein-1 expression in aortic tissues of 2K1C hypertensive rats. Int J Cardiol 2006; 110: 60–66.

    Article  Google Scholar 

  12. Gerszten RE, Garcia-Zepeda EA, Lim YC, et al: MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 1999; 398: 718–723.

    Article  CAS  Google Scholar 

  13. Griendling KK, Taubman MB, Akers M, Mendlowitz M, Alexander RW : Characterization of phosphatidylinositol-specific phospholipase C from cultured vascular smooth muscle cells. J Biol Chem 1991; 266: 15498–15504.

    CAS  PubMed  Google Scholar 

  14. Kim HY, Kim HK, Kim JR, Kim HS : Upregulation of LPS-induced chemokine KC expression by 15-deoxy-Δ12,14-prostagladin J2 in mouse peritoneal macrophages. Immunol Cell Biol 2005; 83: 286–293.

    Article  CAS  Google Scholar 

  15. Thomson AW, Lotze MT ( eds): The Cytokine Handbook. Academic Press, 4th ed. San Diego, Elsevier Science, 2003, pp 1056–1057.

    Google Scholar 

  16. Boekholdt S, Peters R, Hack CE, et al: IL-8 plasma concentrations and the risk of future coronary artery disease in apparently healthy men and women. Arterioscler Thromb Vasc Biol 2004; 24: 1503–1508.

    Article  CAS  Google Scholar 

  17. Buemi M, Marino D, Floccari F, et al: Effect of interleukin 8 and ICAM-1 on calcium-dependent outflow of K+ in erythrocytes from subjects with essential hypertension. Curr Med Res Opin 2004; 20: 19–24.

    Article  CAS  Google Scholar 

  18. Rodriguez-Iturbe B, Ferrebuz A, Vanegas V, Quiroz Y, Mezzano S, Vaziri ND : Early and sustained inhibition of nuclear factor-κB prevents hypertension in spontaneously hypertensive rats. J Pharmacol Exp Ther 2005; 315: 51–57.

    Article  CAS  Google Scholar 

  19. Arndt H, Smith CW, Granger N : Leukocyte-endothelial cell adhesion in spontaneously hypertensive and normotensive rats. Hypertension 1993; 21: 667–673.

    Article  CAS  Google Scholar 

  20. Rajagopalan S, Kurz S, Munzel T, et al: Angiotensin II mediated hypertension in the rat increase vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations of vasomotor tone. J Clin Invest 1996; 97: 1916–1923.

    Article  CAS  Google Scholar 

  21. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW : Angiotensin II stimulates NADH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994; 74: 1141–1148.

    Article  CAS  Google Scholar 

  22. Wolf G, Ziyadeh FN, Thaiss F, et al: Angiotensin II stimulates expression of the chemokine RANTES in rat glomerular endothelial cells. Role of the angiotensin type 2 receptor. J Clin Invest 1997; 100: 1047–1058.

    Article  CAS  Google Scholar 

  23. Zahradka P, Werner JP, Buhay S, Litchie B, Helwer G, Thomas S : NF-κB activation is essential for angiotensin II–dependent proliferation and migration of vascular smooth muscle cells. J Mol Cell Cardiol 2002; 34: 1609–1621.

    Article  CAS  Google Scholar 

  24. Kranzhofer R, Schmidt J, Preiffer CA, Hagl S, Libby P, Kubler W : Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1999; 19: 1623–1629.

    Article  CAS  Google Scholar 

  25. Wolf G, Wenzel U, Burns KD, Harris RC, Stahl RAK, Thaiss F : Angiotensin II activates nuclear transcription factor-κB through AT1 and AT2 receptors. Kidney Int 2002; 61: 1986–1995.

    Article  CAS  Google Scholar 

  26. Ruiz-Ortega M, Lorenzo O, Ruperez M, et al: Angiotensin II activates nuclear transcription factor κB trough AT1 and AT2 in vascular smooth muscle cells. Circ Res 2000; 86: 1266–1272.

    Article  CAS  Google Scholar 

  27. Duff JL, Berk BC, Corson MA : Angiotensin II stimulate the pp44 and pp42 mitogen-activated protein kinase in cultured rat aortic smooth muscle cells. Biochem Biophys Res Commun 1992; 188: 257–264.

    Article  CAS  Google Scholar 

  28. Duff JL, Minia BP, Berk BC : Mitogen-activated protein (MAP) kinase is regulated by the MAP kinase phosphatase (MKP-1) in vascular smooth muscle cells: effect of actinomycin D and antisense oligonucleotides. J Biol Chem 1995; 270: 7161–7166.

    Article  CAS  Google Scholar 

  29. Botros FT, Schwartzman ML, Stier CT Jr, Goodman AI, Abraham NG : Increase in heme oxygenase-1 levels ameliorates renovascular hypertension. Kidney Int 2005; 68: 2745–2755.

    Article  CAS  Google Scholar 

  30. Sabaawy HE, Zhang F, Nguyen X, et al: Human heme oxygenase-1 gene transfer lowers blood pressure and promotes growth in spontaneously hypertensive rats. Hypertension 2001; 38: 210–215.

    Article  CAS  Google Scholar 

  31. Yang L, Quan S, Nasjletti A, Laniado-Schwartzman M, Abraham NG : Heme oxygenase-1 gene expression modulates angiotensin II–induced increase in blood pressure. Hypertension 2004; 43: 1221–1226.

    Article  CAS  Google Scholar 

  32. Vera T, Kelsen S, Yanes LL, Reckelhoff JF, Stec DE : HO-1 induction lowers blood pressure and superoxide production in the renal medulla of angiotensin II hypertensive mice. Am J Physiol Regul Integr Comp Physiol 2007; 292: R1472–R1478.

    Article  CAS  Google Scholar 

  33. Quan S, Yang L, Shnouda S, et al: Expression of human heme oxygenase-1 in the thick ascending limb attenuates angiotensin II–mediated increase in oxidative injury. Kidney Int 2004; 65: 1628–1639.

    Article  CAS  Google Scholar 

  34. Park HS, Chun JN, Jung HY, Choi C, Bae YS : Role of NADPH oxidase 4 in lipopolysaccharide-induced proinflammatory responses by human aortic endothelial cells. Cardiovasc Res 2006; 72: 447–455.

    Article  CAS  Google Scholar 

  35. Nakanaga T, Nadel JA, Ueki IF, Koff JL, Shao MX : Regulation of interleukin-8 via an airway epithelial signaling cascade. Am J Physiol Lung Cell Mol Physiol 2007; 292: L1289–L1296.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Microbiology, College of Medicine, Yeungnam University, Daegu, South Korea

    Hyo Young Kim & Hee Sun Kim

  2. Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, South Korea

    Young Jin Kang & Hyung Chul Choi

  3. Department of Anatomy and Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu, South Korea

    In Hwan Song

Authors
  1. Hyo Young Kim
    View author publications

    Search author on:PubMed Google Scholar

  2. Young Jin Kang
    View author publications

    Search author on:PubMed Google Scholar

  3. In Hwan Song
    View author publications

    Search author on:PubMed Google Scholar

  4. Hyung Chul Choi
    View author publications

    Search author on:PubMed Google Scholar

  5. Hee Sun Kim
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Hee Sun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Kang, Y., Song, I. et al. Upregulation of Interleukin-8/CXCL8 in Vascular Smooth Muscle Cells from Spontaneously Hypertensive Rats. Hypertens Res 31, 515–523 (2008). https://doi.org/10.1291/hypres.31.515

Download citation

  • Received: 14 May 2007

  • Accepted: 13 September 2007

  • Issue date: 01 March 2008

  • DOI: https://doi.org/10.1291/hypres.31.515

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • hypertension
  • vascular smooth muscle cell
  • interleukin-8/CXCL8
  • angiotensin II

This article is cited by

  • Immune cells and hypertension

    • Liren Gan
    • Di Ye
    • Jing Ye

    Immunologic Research (2024)

  • Pro-inflammatory cytokines of rat vasculature in DOCA-salt treatment

    • Behjat Seifi
    • Mehri Kadkhodaee
    • Manoocher Soleimani

    Molecular Biology Reports (2010)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited