Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Transgenic Expression of Matrix Metalloproteinase-1 Inhibits Myocardial Fibrosis and Prevents the Transition to Heart Failure in a Pressure Overload Mouse Model
Download PDF
Download PDF
  • Original Article
  • Published: 01 April 2008

Transgenic Expression of Matrix Metalloproteinase-1 Inhibits Myocardial Fibrosis and Prevents the Transition to Heart Failure in a Pressure Overload Mouse Model

  • Robert F Foronjy1 na1,
  • Jie Sun2 na1,
  • Vincent Lemaitre2 &
  • …
  • Jeanine M D'armiento2 

Hypertension Research volume 31, pages 725–735 (2008)Cite this article

  • 1915 Accesses

  • 3 Altmetric

  • Metrics details

Abstract

Hypertension induces dysfunctional matrix remodeling that results in the development of myocardial fibrosis. Myocardial fibrosis adversely affects compliance, electrical activity and cardiac function in patients with hypertensive heart disease. Matrix metalloproteinases (MMPs) are a class of enzymes that regulate the remodeling of the matrix in response to pressure overload. Several studies have shown that the MMP-1/TIMP (tissue inhibitor of matrix metalloproteinase) ratio is decreased in hypertensive heart disease. However, the exact role that MMP-1 has in modulating the fibrotic response to hypertension is largely unknown. We hypothesized that cardiac expression of MMP-1 in mice would protect against the development of dysfunctional matrix remodeling during pressure overload. To investigate this, a suprarenal aortic banding model was utilized. Banded and unbanded MMP-1 transgenic mice were compared with appropriately matched wild-type mice. The banded mice were examined at 2 and 5 weeks after banding. MMP-1 attenuated the development of cardiac fibrosis, prevented left ventricular dilation and preserved cardiac function in mice that were exposed to pressure overload. Thus, MMP-1 protected the heart from the dysfunctional remodeling that occurs in response to chronic hypertension. In conclusion, these results suggest that strategies aimed at improving the MMP-1/TIMP balance in the myocardium may help to prevent the onset and progression of hypertensive heart disease.

Similar content being viewed by others

Disparate effects of MMP and TIMP modulation on coronary atherosclerosis and associated myocardial fibrosis

Article Open access 30 November 2021

Prostaglandin-E2 receptor-4 stimulant rescues cardiac malfunction during myocarditis and protects the heart from adverse ventricular remodeling after myocarditis

Article Open access 26 October 2021

BMP1 inhibitor UK383367 improves MI-induced cardiac remodeling and fibrosis in mice via ameliorating macrophage polarization and mitochondrial dysfunction

Article 02 September 2025

Article PDF

References

  1. Izzo JL Jr, Gradman AH : Mechanisms and management of hypertensive heart disease: from left ventricular hypertrophy to heart failure. Med Clin North Am 2004; 88: 1257–1271.

    Article  PubMed  Google Scholar 

  2. Weber KT, Jalil JE, Janicki JS, Pick R : Myocardial collagen remodeling in pressure overload hypertrophy. A case for interstitial heart disease. Am J Hypertens 1989; 2: 931–940.

    Article  CAS  PubMed  Google Scholar 

  3. Rossi MA : Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J Hypertens 1998; 16: 1031–1041.

    Article  CAS  PubMed  Google Scholar 

  4. Burlew BS, Weber KT : Cardiac fibrosis as a cause of diastolic dysfunction. Herz 2002; 27: 92–98.

    Article  PubMed  Google Scholar 

  5. Katz AM : The cardiomyopathy of overload: an unnatural growth response. Eur Heart J 1995; 16 ( Suppl O): 110–114.

    Article  PubMed  Google Scholar 

  6. Martos R, Baugh J, Ledwidge M, et al: Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation 2007; 115: 888–895.

    Article  PubMed  Google Scholar 

  7. Caulfield JB, Borg TK : The collagen network of the heart. Lab Invest 1979; 40: 364–372.

    CAS  PubMed  Google Scholar 

  8. Spotnitz HM : Macro design, structure, mechanics of the left ventricle. J Thorac Cardiovasc Surg 2000; 119: 1053–1077.

    Article  CAS  PubMed  Google Scholar 

  9. Kuhn K : The classical collagens: types I, II and III, in Mayne R, Burgeson RE (eds): Structure and Function of Collagen Types. London, Academic Press, 1987, pp 1–42.

    Google Scholar 

  10. Nagase H : Activation mechanisms of matrix metalloproteinases. Biol Chem 1997; 378: 151–160.

    CAS  PubMed  Google Scholar 

  11. Jeffrey JJ : Interstitial Collagenase. London, Academic Press, 1998, pp 15–42.

    Google Scholar 

  12. Sakata Y, Yamamoto K, Mano T, et al: Activation of matrix metalloproteinases precedes left ventricular remodeling in hypertensive heart failure rats: its inhibition as a primary effect of angiotensin-converting enzyme inhibitor. Circulation 2004; 109: 2143–2149.

    Article  CAS  PubMed  Google Scholar 

  13. Janicki JS, Brower GL, Gardner JD, Chancey AL, Stewart JA Jr : The dynamic interaction between matrix metalloproteinase activity and adverse myocardial remodeling. Heart Fail Rev 2004; 9: 33–42.

    Article  CAS  PubMed  Google Scholar 

  14. Kassiri Z, Oudit GY, Sanchez O, et al: Combination of tumor necrosis factor-alpha ablation and matrix metalloproteinase inhibition prevents heart failure after pressure overload in tissue inhibitor of metalloproteinase-3 knock-out mice. Circ Res 2005; 97: 380–390.

    Article  CAS  PubMed  Google Scholar 

  15. Kim HE, Dalal SS, Young E, Legato MJ, Weisfeldt ML, D'Armiento J : Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J Clin Invest 2000; 106: 857–866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nagatomo Y, Carabello BA, Coker ML, et al: Differential effects of pressure or volume overload on myocardial MMP levels and inhibitory control. Am J Physiol Heart Circ Physiol 2000; 278: H151–H161.

    Article  CAS  PubMed  Google Scholar 

  17. Kozak M : Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 1986; 44: 283–292.

    Article  CAS  PubMed  Google Scholar 

  18. Chada K, Magram J, Raphael K, Radice G, Lacy E, Costantini F : Specific expression of a foreign beta-globin gene in erythroid cells of transgenic mice. Nature 1985; 314: 377–380.

    Article  CAS  PubMed  Google Scholar 

  19. Rockman HA, Ross RS, Harris AN, et al: Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci U S A 1991; 88: 8277–8281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Woessner JF Jr : The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys 1961; 93: 440–447.

    Article  CAS  PubMed  Google Scholar 

  21. Pardo Mindan FJ, Panizo A : Alterations in the extracellular matrix of the myocardium in essential hypertension. Eur Heart J 1993; 14 ( Suppl J): 12–14.

    PubMed  Google Scholar 

  22. Tanaka M, Fujiwara H, Onodera T, Wu DJ, Hamashima Y, Kawai C : Quantitative analysis of myocardial fibrosis in normals, hypertensive hearts, and hypertrophic cardiomyopathy. Br Heart J 1986; 55: 575–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brilla CG, Funck RC, Rupp H : Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation 2000; 102: 1388–1393.

    Article  CAS  PubMed  Google Scholar 

  24. Gonzalez A, Lopez B, Querejeta R, Diez J : Regulation of myocardial fibrillar collagen by angiotensin II. A role in hypertensive heart disease? J Mol Cell Cardiol 2002; 34: 1585–1593.

    Article  CAS  PubMed  Google Scholar 

  25. Lopez B, Querejeta R, Varo N, et al: Usefulness of serum carboxy-terminal propeptide of procollagen type I in assessment of the cardioreparative ability of antihypertensive treatment in hypertensive patients. Circulation 2001; 104: 286–291.

    Article  CAS  PubMed  Google Scholar 

  26. Shirwany A, Weber KT : Extracellular matrix remodeling in hypertensive heart disease. J Am Coll Cardiol 2006; 48: 97–98.

    Article  CAS  PubMed  Google Scholar 

  27. Laviades C, Varo N, Fernandez J, et al: Abnormalities of the extracellular degradation of collagen type I in essential hypertension. Circulation 1998; 98: 535–540.

    Article  CAS  PubMed  Google Scholar 

  28. Marin F, Roldan V, Climent V, Garcia A, Marco P, Lip GY : Is thrombogenesis in atrial fibrillation related to matrix metalloproteinase-1 and its inhibitor, TIMP-1? Stroke 2003; 34: 1181–1186.

    Article  CAS  PubMed  Google Scholar 

  29. Lindsay MM, Maxwell P, Dunn FG : TIMP-1: a marker of left ventricular diastolic dysfunction and fibrosis in hypertension. Hypertension 2002; 40: 136–141.

    Article  CAS  PubMed  Google Scholar 

  30. Heymans S, Schroen B, Vermeersch P, et al: Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation 2005; 112: 1136–1144.

    Article  CAS  PubMed  Google Scholar 

  31. Kawano H, Do YS, Kawano Y, et al: Angiotensin II has multiple profibrotic effects in human cardiac fibroblasts. Circulation 2000; 101: 1130–1137.

    Article  CAS  PubMed  Google Scholar 

  32. Dostal DE : Regulation of cardiac collagen: angiotensin and cross-talk with local growth factors. Hypertension 2001; 37: 841–844.

    Article  CAS  PubMed  Google Scholar 

  33. Chua CC, Chua BH, Zhao ZY, Krebs C, Diglio C, Perrin E : Effect of growth factors on collagen metabolism in cultured human heart fibroblasts. Connect Tissue Res 1991; 26: 271–281.

    Article  CAS  PubMed  Google Scholar 

  34. Edwards DR, Murphy G, Reynolds JJ, et al: Transforming growth factor beta modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J 1987; 6: 1899–1904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hall MC, Young DA, Waters JG, et al: The comparative role of activator protein 1 and Smad factors in the regulation of Timp-1 and MMP-1 gene expression by transforming growth factor-beta 1. J Biol Chem 2003; 278: 10304–10313.

    Article  CAS  PubMed  Google Scholar 

  36. Robinson TF, Cohen-Gould L, Factor SM : Skeletal framework of mammalian heart muscle. Arrangement of inter-and pericellular connective tissue structures. Lab Invest 1983; 49: 482–498.

    CAS  PubMed  Google Scholar 

  37. Robinson TF, Factor SM, Capasso JM, Wittenberg BA, Blumenfeld OO, Seifter S : Morphology, composition, and function of struts between cardiac myocytes of rat and hamster. Cell Tissue Res 1987; 249: 247–255.

    Article  CAS  PubMed  Google Scholar 

  38. Baicu CF, Stroud JD, Livesay VA, et al: Changes in extracellular collagen matrix alter myocardial systolic performance. Am J Physiol Heart Circ Physiol 2003; 284: H122–H132.

    Article  CAS  PubMed  Google Scholar 

  39. Matsubara LS, Matsubara BB, Okoshi MP, Cicogna AC, Janicki JS : Alterations in myocardial collagen content affect rat papillary muscle function. Am J Physiol Heart Circ Physiol 2000; 279: H1534–H1539.

    Article  CAS  PubMed  Google Scholar 

  40. Li W, Tanaka K, Chiba Y, et al: Role of MMPs and plasminogen activators in angiogenesis after transmyocardial laser revascularization in dogs. Am J Physiol Heart Circ Physiol 2003; 284: H23–H30.

    Article  CAS  PubMed  Google Scholar 

  41. Siwik DA, Pagano PJ, Colucci WS : Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol 2001; 280: C53–C60.

    Article  CAS  PubMed  Google Scholar 

  42. Katoh M, Kurosawa Y, Tanaka K, Watanabe A, Doi H, Narita H : Fluvastatin inhibits O2- and ICAM-1 levels in a rat model with aortic remodeling induced by pressure overload. Am J Physiol Heart Circ Physiol 2001; 281: H655–H660.

    Article  CAS  PubMed  Google Scholar 

  43. Altieri P, Brunelli C, Garibaldi S, et al: Metalloproteinases 2 and 9 are increased in plasma of patients with heart failure. Eur J Clin Invest 2003; 33: 648–656.

    Article  CAS  PubMed  Google Scholar 

  44. Squire IB, Evans J, Ng LL, Loftus IM, Thompson MM : Plasma MMP-9 and MMP-2 following acute myocardial infarction in man: correlation with echocardiographic and neurohumoral parameters of left ventricular dysfunction. J Card Fail 2004; 10: 328–333.

    Article  CAS  PubMed  Google Scholar 

  45. Hayashidani S, Tsutsui H, Ikeuchi M, et al: Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction. Am J Physiol Heart Circ Physiol 2003; 285: H1229–H1235.

    Article  CAS  PubMed  Google Scholar 

  46. Matsumura S, Iwanaga S, Mochizuki S, Okamoto H, Ogawa S, Okada Y : Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. J Clin Invest 2005; 115: 599–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Creemers EE, Davis JN, Parkhurst AM, et al: Deficiency of TIMP-1 exacerbates LV remodeling after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 2003; 284: H364–H371.

    Article  CAS  PubMed  Google Scholar 

  48. Heymans S, Lupu F, Terclavers S, et al: Loss or inhibition of uPA or MMP-9 attenuates LV remodeling and dysfunction after acute pressure overload in mice. Am J Pathol 2005; 166: 15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee RT : Matrix metalloproteinase inhibition and the prevention of heart failure. Trends Cardiovasc Med 2001; 11: 202–205.

    Article  CAS  PubMed  Google Scholar 

  50. Lindsey M, Lee RT : MMP inhibition as a potential therapeutic strategy for CHF. Drug News Perspect 2000; 13: 350–354.

    CAS  PubMed  Google Scholar 

Download references

Author information

Author notes
  1. Robert F Foronjy and Jie Sun: These two authors contributed equally to the manuscript.

Authors and Affiliations

  1. Division of Pulmonary and Critical Care, Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, USA

    Robert F Foronjy

  2. Division of Molecular Medicine, Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, USA

    Jie Sun, Vincent Lemaitre & Jeanine M D'armiento

Authors
  1. Robert F Foronjy
    View author publications

    Search author on:PubMed Google Scholar

  2. Jie Sun
    View author publications

    Search author on:PubMed Google Scholar

  3. Vincent Lemaitre
    View author publications

    Search author on:PubMed Google Scholar

  4. Jeanine M D'armiento
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Jeanine M D'armiento.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foronjy, R., Sun, J., Lemaitre, V. et al. Transgenic Expression of Matrix Metalloproteinase-1 Inhibits Myocardial Fibrosis and Prevents the Transition to Heart Failure in a Pressure Overload Mouse Model. Hypertens Res 31, 725–735 (2008). https://doi.org/10.1291/hypres.31.725

Download citation

  • Received: 11 April 2007

  • Accepted: 31 October 2007

  • Issue date: 01 April 2008

  • DOI: https://doi.org/10.1291/hypres.31.725

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • hypertension
  • collagen
  • matrix metalloproteinase
  • fibrosis

This article is cited by

  • Circulating matrix metalloproteinases and tissue metalloproteinase inhibitors in patients with idiopathic pulmonary fibrosis in the multicenter IPF-PRO Registry cohort

    • Jamie L. Todd
    • Richard Vinisko
    • John A. Belperio

    BMC Pulmonary Medicine (2020)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited