Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Hypertension Research
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. hypertension research
  3. original article
  4. article
Pioglitazone Enhances the Antihypertensive and Renoprotective Effects of Candesartan in Zucker Obese Rats Fed a High-Protein Diet
Download PDF
Download PDF
  • Original Article
  • Published: 01 April 2008

Pioglitazone Enhances the Antihypertensive and Renoprotective Effects of Candesartan in Zucker Obese Rats Fed a High-Protein Diet

  • Tamehachi Namikoshi1,
  • Naruya Tomita1,
  • Minoru Satoh1,
  • Yoshisuke Haruna1,
  • Shinya Kobayashi1,
  • Norio Komai1,
  • Tamaki Sasaki1 &
  • …
  • Naoki Kashihara1 

Hypertension Research volume 31, pages 745–755 (2008)Cite this article

  • 1239 Accesses

  • Metrics details

Abstract

The metabolic syndrome is a risk factor for the development of chronic kidney disease. Angiotensin II type 1 receptor blockers (ARBs) and thiazolidinediones (TZDs) provide renovascular protection, probably in the metabolic syndrome. However, the effect of both agents administered together in patients with metabolic syndrome remains to be determined. The aim of this study was to assess the effects of ARB plus TZD combination therapy in Zucker obese rats fed a high-protein diet, an animal model of metabolic syndrome and renal injury. Zucker obese rats were fed a high-protein diet (OHP; n=6), a high-protein diet containing candesartan, an ARB (OHP+C; n=6), or a high-protein diet containing both candesartan and pioglitazone (OHP+CP; n=6) for 12 weeks. Systolic blood pressure and urinary protein excretion were measured throughout the study, and renal histology and immunohistochemistry were assessed at 12 weeks. OHP rats developed hypertension (157±4 mmHg) and proteinuria (178±44 mg/d), and these conditions were significantly ameliorated by candesartan (to 143±3 mmHg and 84±25 mg/d, respectively). Pioglitazone enhanced the antihypertensive and anti-proteinuric effects of candesartan (121±3 mmHg, 16±8 mg/d, respectively). Histologically, candesartan ameliorated glomerulosclerosis, podocyte injury, interstitial fibrosis and monocyte/macrophage infiltration into the tubulointerstitium in the kidneys of OHP rats. Pioglitazone abrogated residual interstitial fibrosis in the kidneys of OHP+C rats. Our results suggested that pioglitazone augmented the antihypertensive, anti-proteinuric and possibly renal anti-fibrotic actions of candesartan in Zucker obese rats fed a high-protein diet. The combination therapy of ARB and TZD may protect against renal injury in patients with metabolic syndrome.

Similar content being viewed by others

Angiotensin II type 2 receptor activation preserves megalin in the kidney and prevents proteinuria in high salt diet fed rats

Article Open access 15 March 2023

Angiotensin II type 1 receptor-associated protein deletion combined with angiotensin II stimulation accelerates the development of diabetic kidney disease in mice on a C57BL/6 strain

Article 13 November 2023

8-Aminoguanine and its actions in the metabolic syndrome

Article Open access 30 September 2024

Article PDF

References

  1. Lakka HM, Laaksonen DE, Lakka TA, et al: The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 2002; 288: 2709–2716.

    Article  Google Scholar 

  2. Isomaa B, Almgren P, Tuomi T, et al: Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 2001; 24: 683–689.

    Article  CAS  Google Scholar 

  3. Chen J, Muntner P, Hamm LL, et al: The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med 2004; 140: 167–174.

    Article  Google Scholar 

  4. Kurella M, Lo JC, Chertow GM : Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults. J Am Soc Nephrol 2005; 16: 2134–2140.

    Article  Google Scholar 

  5. Tanaka H, Shiohira Y, Uezu Y, Higa A, Iseki K : Metabolic syndrome and chronic kidney disease in Okinawa, Japan. Kidney Int 2006; 69: 369–374.

    Article  CAS  Google Scholar 

  6. Ruster C, Wolf G : Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol 2006; 17: 2985–2991.

    Article  Google Scholar 

  7. Karalliedde J, Viberti G : Evidence for renoprotection by blockade of the renin-angiotensin-aldosterone system in hypertension and diabetes. J Hum Hypertens 2006; 20: 239–253.

    Article  CAS  Google Scholar 

  8. Derosa G, Cicero AF, Dangelo A, et al: Thiazolidinedione effects on blood pressure in diabetic patients with metabolic syndrome treated with glimepiride. Hypertens Res 2005; 28: 917–924.

    Article  CAS  Google Scholar 

  9. Sarafidis PA, Bakris GL : Protection of the kidney by thiazolidinediones: an assessment from bench to bedside. Kidney Int 2006; 70: 1223–1233.

    Article  CAS  Google Scholar 

  10. Kiberd B : The chronic kidney disease epidemic: stepping back and looking forward. J Am Soc Nephrol 2006; 17: 2967–2973.

    Article  Google Scholar 

  11. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY : Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004; 351: 1296–1305.

    Article  CAS  Google Scholar 

  12. Zucker LM : Hereditary obesity in the rat associated with hyperlipemia. Ann N Y Acad Sci 1965; 131: 447–458.

    Article  CAS  Google Scholar 

  13. Kasiske BL, O'Donnell MP, Keane WF : The Zucker rat model of obesity, insulin resistance, hyperlipidemia, and renal injury. Hypertension 1992; 19 ( Suppl 1): I110–I115.

    Article  CAS  Google Scholar 

  14. Kasiske BL, Cleary MP, O'Donnell MP, Keane WF : Effects of genetic obesity on renal structure and function in the Zucker rat. J Lab Clin Med 1985; 106: 598–604.

    CAS  PubMed  Google Scholar 

  15. Alavi FK, Zawada ET, Simmons JL : Renal hemodynamic and histological consequences of diets high in unsaturated fat, protein or sucrose in obese Zucker rats. Clin Nephrol 1995; 43: 122–130.

    CAS  PubMed  Google Scholar 

  16. Mizuno M, Sada T, Kato M, Koike H : Renoprotective effects of blockade of angiotensin II AT1 receptors in an animal model of type 2 diabetes. Hypertens Res 2002; 25: 271–278.

    Article  CAS  Google Scholar 

  17. Schmitz PG, O'Donnell MP, Kasiske BL, Katz SA, Keane WF : Renal injury in obese Zucker rats: glomerular hemodynamic alterations and effects of enalapril. Am J Physiol 1992; 263: F496–F502.

    CAS  PubMed  Google Scholar 

  18. Yoshimoto T, Naruse M, Nishikawa M, et al: Antihypertensive and vasculo- and renoprotective effects of pioglitazone in genetically obese diabetic rats. Am J Physiol 1997; 272: E989–E996.

    Article  CAS  Google Scholar 

  19. Buckingham RE, Al-Barazanji KA, Toseland CD, et al: Peroxisome proliferator–activated receptor-γ agonist, rosiglitazone, protects against nephropathy and pancreatic islet abnormalities in Zucker fatty rats. Diabetes 1998; 47: 1326–1334.

    CAS  PubMed  Google Scholar 

  20. Baylis C, Atzpodien EA, Freshour G, Engels K : Peroxisome proliferator–activated receptor γ agonist provides superior renal protection versus angiotensin-converting enzyme inhibition in a rat model of type 2 diabetes with obesity. J Pharmacol Exp Ther 2003; 307: 854–860.

    Article  CAS  Google Scholar 

  21. Tomita N, Higaki J, Kaneda Y, et al: Hypertensive rats produced by in vivo introduction of the human renin gene. Circ Res 1993; 73: 898–905.

    Article  CAS  Google Scholar 

  22. Namikoshi T, Tomita N, Fujimoto S, et al: Isohumulones derived from hops ameliorate renal injury via an anti-oxidative effect in Dahl salt-sensitive rats. Hypertens Res 2007; 30: 175–184.

    Article  CAS  Google Scholar 

  23. Coimbra TM, Janssen U, Grone HJ, et al: Early events leading to renal injury in obese Zucker (fatty) rats with type II diabetes. Kidney Int 2000; 57: 167–182.

    Article  CAS  Google Scholar 

  24. Palmer BF : Disturbances in renal autoregulation and the susceptibility to hypertension-induced chronic kidney disease. Am J Med Sci 2004; 328: 330–343.

    Article  Google Scholar 

  25. Dubey RK, Zhang HY, Reddy SR, Boegehold MA, Kotchen TA : Pioglitazone attenuates hypertension and inhibits growth of renal arteriolar smooth muscle in rats. Am J Physiol 1993; 265: R726–R732.

    CAS  PubMed  Google Scholar 

  26. Hayashi K, Kanda T, Homma K, et al: Altered renal microvascular response in Zucker obese rats. Metabolism 2002; 51: 1553–1561.

    Article  CAS  Google Scholar 

  27. Rodriguez WE, Tyagi N, Joshua IG, et al: Pioglitazone mitigates renal glomerular vascular changes in high-fat, high-calorie–induced type 2 diabetes mellitus. Am J Physiol Renal Physiol 2006; 291: F694–F701.

    Article  CAS  Google Scholar 

  28. Zhang HY, Reddy SR, Kotchen TA : Antihypertensive effect of pioglitazone is not invariably associated with increased insulin sensitivity. Hypertension 1994; 24: 106–110.

    Article  Google Scholar 

  29. Iida KT, Kawakami Y, Suzuki M, et al: Effect of thiazolidinediones and metformin on LDL oxidation and aortic endothelium relaxation in diabetic GK rats. Am J Physiol Endocrinol Metab 2003; 284: E1125–E1130.

    Article  CAS  Google Scholar 

  30. Dobrian AD, Schriver SD, Khraibi AA, Prewitt RL : Pioglitazone prevents hypertension and reduces oxidative stress in diet-induced obesity. Hypertension 2004; 43: 48–56.

    Article  CAS  Google Scholar 

  31. Calnek DS, Mazzella L, Roser S, Roman J, Hart CM : Peroxisome proliferator–activated receptor γ ligands increase release of nitric oxide from endothelial cells. Arterioscler Thromb Vasc Biol 2003; 23: 52–57.

    Article  CAS  Google Scholar 

  32. Cho DH, Choi YJ, Jo SA, Jo I : Nitric oxide production and regulation of endothelial nitric-oxide synthase phosphorylation by prolonged treatment with troglitazone: evidence for involvement of peroxisome proliferator–activated receptor (PPAR) γ–dependent and PPARγ-independent signaling pathways. J Biol Chem 2004; 279: 2499–2506.

    Article  CAS  Google Scholar 

  33. Wakino S, Hayashi K, Tatematsu S, et al: Pioglitazone lowers systemic asymmetric dimethylarginine by inducing dimethylarginine dimethylamino-hydrolase in rats. Hypertens Res 2005; 28: 255–262.

    Article  CAS  Google Scholar 

  34. Arima S, Kohagura K, Takeuchi K, et al: Biphasic vasodilator action of troglitazone on the renal microcirculation. J Am Soc Nephrol 2002; 13: 342–349.

    CAS  PubMed  Google Scholar 

  35. Xu ZG, Lanting L, Vaziri ND, et al: Upregulation of angiotensin II type 1 receptor, inflammatory mediators, and enzymes of arachidonate metabolism in obese Zucker rat kidney: reversal by angiotensin II type 1 receptor blockade. Circulation 2005; 111: 1962–1969.

    Article  CAS  Google Scholar 

  36. Diep QN, El Mabrouk M, Cohn JS, et al: Structure, endothelial function, cell growth, and inflammation in blood vessels of angiotensin II–infused rats: role of peroxisome proliferator–activated receptor-γ. Circulation 2002; 105: 2296–2302.

    Article  CAS  Google Scholar 

  37. Wolf G, Chen S, Ziyadeh FN : From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy. Diabetes 2005; 54: 1626–1634.

    Article  CAS  Google Scholar 

  38. Benigni A, Zoja C, Tomasoni S, et al: Transcriptional regulation of nephrin gene by peroxisome proliferator–activated receptor-γ agonist: molecular mechanism of the antiproteinuric effect of pioglitazone. J Am Soc Nephrol 2006; 17: 1624–1632.

    Article  CAS  Google Scholar 

  39. Abbate M, Zoja C, Remuzzi G : How does proteinuria cause progressive renal damage? J Am Soc Nephrol 2006; 17: 2974–2984.

    Article  CAS  Google Scholar 

  40. Ma LJ, Marcantoni C, Linton MF, Fazio S, Fogo AB : Peroxisome proliferator–activated receptor-γ agonist troglitazone protects against nondiabetic glomerulosclerosis in rats. Kidney Int 2001; 59: 1899–1910.

    Article  CAS  Google Scholar 

  41. Zafiriou S, Stanners SR, Saad S, Polhill TS, Poronnik P, Pollock CA : Pioglitazone inhibits cell growth and reduces matrix production in human kidney fibroblasts. J Am Soc Nephrol 2005; 16: 638–645.

    Article  CAS  Google Scholar 

  42. Li Y, Wen X, Spataro BC, Hu K, Dai C, Liu Y : Hepatocyte growth factor is a downstream effector that mediates the antifibrotic action of peroxisome proliferator–activated receptor-γ agonists. J Am Soc Nephrol 2006; 17: 54–65.

    Article  CAS  Google Scholar 

  43. Pasceri V, Wu HD, Willerson JT, Yeh ET : Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator–activated receptor-γ activators. Circulation 2000; 101: 235–238.

    Article  CAS  Google Scholar 

  44. Ishibashi M, Egashira K, Hiasa K, et al: Antiinflammatory and antiarteriosclerotic effects of pioglitazone. Hypertension 2002; 40: 687–693.

    Article  CAS  Google Scholar 

  45. Namikoshi T, Satoh M, Tomita N, et al: Pioglitazone ameliorates endothelial dysfunction in obese rats with nephropathy. Biochem Biophys Res Commun 2007; 361: 835–840.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Division of Nephrology, Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Japan

    Tamehachi Namikoshi, Naruya Tomita, Minoru Satoh, Yoshisuke Haruna, Shinya Kobayashi, Norio Komai, Tamaki Sasaki & Naoki Kashihara

Authors
  1. Tamehachi Namikoshi
    View author publications

    Search author on:PubMed Google Scholar

  2. Naruya Tomita
    View author publications

    Search author on:PubMed Google Scholar

  3. Minoru Satoh
    View author publications

    Search author on:PubMed Google Scholar

  4. Yoshisuke Haruna
    View author publications

    Search author on:PubMed Google Scholar

  5. Shinya Kobayashi
    View author publications

    Search author on:PubMed Google Scholar

  6. Norio Komai
    View author publications

    Search author on:PubMed Google Scholar

  7. Tamaki Sasaki
    View author publications

    Search author on:PubMed Google Scholar

  8. Naoki Kashihara
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Naruya Tomita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namikoshi, T., Tomita, N., Satoh, M. et al. Pioglitazone Enhances the Antihypertensive and Renoprotective Effects of Candesartan in Zucker Obese Rats Fed a High-Protein Diet. Hypertens Res 31, 745–755 (2008). https://doi.org/10.1291/hypres.31.745

Download citation

  • Received: 22 May 2007

  • Accepted: 12 November 2007

  • Issue date: 01 April 2008

  • DOI: https://doi.org/10.1291/hypres.31.745

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • dietary protein
  • angiotensin II type 1 receptor blocker
  • thiazolidinediones
  • tubulointerstitial injury

This article is cited by

  • Interplay between the renin-angiotensin system, the canonical WNT/β-catenin pathway and PPARγ in hypertension

    • Alexandre Vallée
    • Bernard L. Lévy
    • Jacques Blacher

    Current Hypertension Reports (2018)

  • Azelnidipine attenuates glomerular damage in Dahl salt-sensitive rats by suppressing sympathetic nerve activity

    • Hajime Nagasu
    • Minoru Satoh
    • Naoki Kashihara

    Hypertension Research (2012)

  • Endothelial dysfunction as an underlying pathophysiological condition of chronic kidney disease

    • Minoru Satoh

    Clinical and Experimental Nephrology (2012)

  • Thiazolidinediones in the treatment of patients with Post-Transplant-Hyperglycemia or new-onset diabetes mellitus after renal transplantation (NODAT) – A new therapeutic option?

    • Marcus D. Säemann
    • Michael Krebs

    Wiener klinische Wochenschrift (2010)

  • Renoprotective effects of an angiotensin II receptor blocker in experimental model rats with hypertension and metabolic disorders

    • Daisuke Watanabe
    • Akiyo Tanabe
    • Kazue Takano

    Hypertension Research (2009)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Guide to Authors
  • About the Editors
  • Message from Editors
  • Call for Paper
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Showcase of Graphical Abstracts on Hypertension Research

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Hypertension Research (Hypertens Res)

ISSN 1348-4214 (online)

ISSN 0916-9636 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited