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Obesity is linked to a wide variety of cardiac changes, from subclinical diastolic dysfunction to end-stage systolic heart failure.
Obesity causes changes in cardiac metabolism, which make ATP production and utilization less efficient, producing functional
consequences that are linked to the increased rate of heart failure in this population. As a result of the increases in circulating fatty
acids and insulin resistance that accompanies excess fat storage, several of the proteins and genes that are responsible for fatty acid
uptake and metabolism are upregulated, and the metabolic machinery responsible for glucose utilization and oxidation are
inhibited. The resultant increase in fatty acid metabolism, and the inherent alterations in the proteins of the electron transport
chain used to create the gradient needed to drive mitochondrial ATP production, results in a decrease in efficiency of cardiac work
and a relative increase in oxygen usage. These changes in cardiac mitochondrial metabolism are potential therapeutic targets for
the treatment and prevention of obesity-related heart failure.
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INTRODUCTION
Cardiac energy metabolism is essentially a four-step process
involving the following: (1) myocellular substrate uptake/selection,
(2) mitochondrial ATP production and (3) ATP transfer from the
site of production (mitochondrion) to (4) the site of ATP utilization
(cardiac myofibril; Figure 1).1

Although glycolysis is an ATP generator, the overall ATP
production is controlled largely by the rate at which the Krebs
(tricarboxylic acid) cycle operates.2 Acetyl co-enzyme A (CoA),
which is produced from the oxidation of fatty acids, ketone
bodies, or glucose via glycolysis, and the pyruvate dehydrogenase
(PDH) enzyme complex3 enters the Krebs cycle for complete
oxidation. During oxidative phosphorylation, electrons, primarily
obtained from oxidative metabolism of carbohydrates and fats,
are transferred through the electron transport chain, a four-
complex protein system embedded within the inner membrane of
the mitochondria. The major function of the electron transport
chain is to produce a proton electrochemical potential difference
between two compartments that powers ATP synthase to
generate ATP, which is used for all cardiac cellular processes.4

ATP is the heart’s only immediate source of energy for
contraction, and as both systole and diastole are ATP-consuming
processes,5,6 cardiac ATP demand is very high. To keep up with
this demand for continuous and efficient contraction and
relaxation, the heart needs to produce around 20 times its own
weight in ATP per day.1 As a result of this large energy
requirement, any impairment in ATP production, transfer or
utilization can have detrimental effects on cardiac function.7

Cardiac metabolism and ATP production is altered in obesity and
has emerged as a candidate mechanism to explain the increase in
heart failure in this population.8 Indeed, it has recently been
shown that obesity, in the absence of co-morbidities, is linked
to impaired myocardial high-energy phosphate metabolism9

and diastolic dysfunction,10–12 both markers of increased

cardiovascular risk,13 providing a mechanistic link between
altered myocardial energy production and mortality.
However, although it is well recognized that a subset of obese

subjects are free of the associated metabolic co-morbidities, it is
well known that the majority of obese subjects are at risk of insulin
resistance, diabetes and hypertension, all of which are known to
independently effect cardiac energy metabolism.5,14 As such,
isolating the effects of obesity per se on cardiac metabolism is
difficult, but given the ever-increasing incidence of obesity and
its links to heart failure8 and mortality,15 understanding the
alterations of myocardial metabolism that occur in obesity are of
great importance and may provide therapeutic options to treat or
prevent cardiac dysfunction. This review focuses on the current
knowledge of the changes in myocardial metabolism that occur in
obesity without established co-morbidities.

METHODS
Relevant articles were selected from Pubmed. The initial search
term was ‘Myocardial, Metabolism, Obesity’, which revealed 1877
articles. This was refined to ‘Myocardial Energetics Obesity’ (11
articles), ‘Myocardial Substrate Selection’ (80 articles), ‘Myocardial
Substrate Metabolism Obesity’ (64 articles), ‘Myocardial Substrate
Metabolism Weight Loss’ (24 articles) and ‘Partial Fatty Acid
Oxidation Inhibitors Heart’ (23 articles). Of these 202 articles, 88
were excluded for not having a direct relevance to obesity and
114 were finally selected for the review.

ALTERED MYOCARDIAL SUBSTRATE SELECTION IN OBESITY
Myocardial substrate selection is a fundamental step in myocardial
metabolism. In normal heart, in the resting, fasted state, the vast
majority (60–90%)16 of the acetyl CoA that enters the Krebs cycle
comes from the b-oxidation of free fatty acids (FFAs),17 with
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10–40% of the acetyl CoA coming from the oxidation of pyruvate,
which itself is derived from either glycolysis or lactate oxidation
(Figure 2).18 However, the heart is able to display great flexibility
in its choice of substrate, depending on the prevailing metabolic
conditions.19 For example, in the uncontrolled diabetic state,
because of the combined effects of insulin resistance and high
circulating FFAs, the myocardium uses fatty acids almost
exclusively to support ATP synthesis.20

This remarkable ability of the heart to switch between
metabolic substrates appears to be a part of natural fetal
development, where a switch in cardiac fuel preference from
glucose to fatty acids occurs just after birth, when oxygen
availability and dietary fat content abruptly increase, making fatty
acid oxidation more preferable than glucose oxidation. The
importance of this neonatal metabolic switch to fatty acid
preference is apparent in children with mutations in medium-
chain acyl-CoA dehydrogenase (MCAD) and very long-chain acyl-
CoA dehydrogenase (VLCAD), genes involved in fatty acid
b-oxidation, who develop a cardiomyopathy during periods of
illness or metabolic stress.21 The importance is again highlighted
in the setting of heart failure and left ventricular (LV) hypertrophy,
where mitochondrial oxidative capacity is reduced and meta-
bolism shifts back towards a reliance on glucose metabolism,
resembling the fetal metabolic program.22,23

As the heart is an extremely efficient scavenger of circulating
non-esterified FFAs (up to 40% extraction fraction),24 the rate of
fatty-acid uptake by the heart is primarily determined by the
concentration of non-esterified fatty acids in the plasma.25 The
concentration of serum FFAs is highly regulated and represents a
balance between production via hormone-sensitive lipase-
induced adipose tissue triglyceride breakdown and synthesis via
glycerolphosphate acyltransferase.25 As hormone-sensitive lipase
is activated by catecholamines and inhibited by insulin; this
allows the plasma FFA concentration to rise during periods when
glucose supply is limited (for example, exercise or fasting),
resulting in a higher rate of cardiomyocyte uptake and
utilization.25,26

Fatty acid movement into the cardiomyocyte occurs either by
passive diffusion or by protein-mediated transport across the
sarcolemma via fatty acid translocase (FAT/CD36) or fatty acid-
binding protein.27 Once inside the cell, control of fatty acid
oxidation occurs at the level of mitochondrial uptake of fatty acids
by carnitine palmitoyltransferase 1 (CPT1). CPT1 is associated with
the outer mitochondrial membrane and mediates the transport of
long-chain fatty acids across the membrane by binding the fatty
acid moiety from acyl-CoA to long-chain acylcarnitine, which is
then transported into the mitochondria.28,29 CPT1 is inhibited by
malonyl-CoA, an important regulator of fatty acid oxidation in the
heart. Malonyl-CoA, the first intermediate in fatty acid synthesis, is
produced by acetyl-CoA carboxylase and is broken down by
malonyl-CoA decarboxylase.30 AMP-activated protein kinase
regulates malonyl-CoA levels by phosphorylating and inhibiting
acetyl-CoA carboxylase, increasing fatty acid oxidation (Figure 2).31

Obesity is linked to increased circulating FFA levels,32 and both
human33 and animal studies34,35 have shown increased oxidation
of FFAs in obesity and insulin resistance, and a shift in substrate
utilization further towards FFA metabolism (Figure 3).
The crucial importance of this increase in fatty acid metabolism

lies in the fact that the mitochondrial redox state and, as a result,
the free energy of hydrolysis of ATP are affected by the substrate
oxidized. To understand this effect, we have to consider the
relationship between the thermodynamic relationship, between
DG (Gibbs free energy, a thermodynamic potential that measures
the process-initiating work obtainable from a thermodynamic
system) and DH (change in enthalpy or heat energy). Fundamen-
tally, our body is driven by a series of controlled chemical
reactions, resulting in the oxidation of carbon substrates to water
and CO2. Thus, for a given amount of substance, the maximum
amount of non-expansive work that can be obtained from a
closed system is denoted by the Gibbs free energy. Described in
1873,36 this application of the second law of thermodynamics can
be readily translated to biological systems and, in its simplest
form, relates enthalpy and entropy to a conservation of energy.
This is put formally as:

DG¼DH�TDS

This equation, in part, explains why certain substrates (with higher
enthalpy) yield greater potential energy to power a system; the
larger the value of Gibbs free energy, the more energy that can be
exchanged with the surrounding system. In non-standard
chemical conditions such as those present in most biological
systems,37 an alternative form of this equation is used.

DG’¼DG� þRT‘nQ

This equation allows the integration of the reaction quotient (Q)
into the relationship between free energy and the chemical
conditions under which the reaction is taking place. In case of
cellular substrate energetics, the final common endpoint for the
complete oxidation of carbon fuels is the conservation of energy
in the phosphate bonds of ATP. Therefore, applying this concept
to the equation above, the inherent energy stored in this bond
(DGATP hydrolysis) can be calculated from the equation38–47

DG’¼DG� þRT‘n
½ADP�½Pi�
½ATP�

Despite the apparent simplicity of oxidizing substrates to liberate
energy to perform work, the useful free energy of substrate
combustion is influenced by the architecture of the metabolic
pathway and the enthalpy of that particular substrate. For this
reason, the available free energy to perform work, the free energy
of ATP hydrolysis (DG0

ATP hydrolysis), is not equivalent for all dietary
fuels. As the conversion of ADPþ Pi to ATP is driven by the
electrochemical potential difference across the mitochondrial
membranes, the equation for free energy can now be expressed
as:

DG’¼ � nFDEinter/matrix

(where DG0 is the free energy, n is the number of electrons, F is the
Faraday constant and DE is the difference in redox potential
between ‘Inter’ and ‘Matrix’, denoting the separate mitochondrial
phases partitioned by the inner mitochondrial membrane.48,46 It
then becomes apparent that the larger the electrical potential
difference between mitochondrial phases created by the pumping
of protons into the inter-mitochondrial space,49 the greater the
potential free energy. An increase in redox energy of the
respiratory chain results in an increase in the energy of the
protons expelled from the mitochondria at the energy-conserving
sites, which is then reflected in an increase in the energy of ATP
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Figure 1. Sequential steps in myocardial metabolism. (1) Fuel
selection, (2) mitochondrial oxidation and ATP production, (3) ATP
transport via CK shuttle from site of production to (4) site of
utilization for contractile function.
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Figure 2. Normal myocardial metabolism.
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Figure 3. Changes in myocardial metabolism in obesity (red cross denotes PPARa-mediated change). The colour reproduction of this figure is
available on the International Journal of Obesity journal online.
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hydrolysis. We can express the potential energy of this proton
gradient as:

DG’½H þ �Inter/½H þ �Matrix ¼RT‘n½H þ �Inter/½H þ �Matrix þ FEMatrix/Inter

Therefore, the relative supply of reducing equivalents generated
by the architecture of each pathway also has a significant
influence on mitochondrial potential gradients, and thus the
DG0

ATP hydrolysis.
43,50,51

Hence, although the electron transport chain is in itself a
remarkably efficient series of biochemical reactions,52 the free
energy of ATP hydrolysis is not identical for all substrates
(Figure 4).53,50,51 Heat of combustion is also of inherent
importance when considering the potential impact of
mitochondrial substrate selection on energetic performance.
Pyruvate, the end product of glycolysis, has a lower heat of
combustion per C2 unit than palmitate, providing less potential
energy to the electron transport chain.
However, fatty acid metabolism, despite its large potential

energy, is not able to provide greater mitochondrial redox power.
The reasons for this lies in the architecture of fatty acid
metabolism by b-oxidation, and the changes in mitochondrial
membrane uncoupling proteins in response to persistently
elevated FFAs. Only 50% of the reducing equivalents produced
in the process of b-oxidation are able to donate electrons at
complex I of the electron transport chain, whereas the remaining
half are donated by FADH2 at the flavoprotein site further
‘downstream’ at complex II.48 This results in a reduced ATP yield
and a loss of mitochondrial efficiency. The redox span of the
respiratory chain is diminished during fat metabolism as the Q-
couple is reduced. This decreases the potential difference
between matrix and inter-mitochondrial membrane space, and
therefore DG0

ATP. Raised FFAs also increase the expression of
uncoupling proteins,54 which decrease mitochondrial efficiency43

by allowing the passage of protons into the matrix via non-ATP-
generating pathways. Indeed, when the heart is perfused with
increasing concentrations of FFAs, this results in an additional
oxygen cost of between 25 and 48% for the same work output
when compared with glucose and insulin infusion.55 The loss of
myocardial efficiency when metabolizing fat has been attributed
to reductions in mitochondrial electron transport chain coupling,
and the increased stoichiometric oxygen requirement to oxidize
fat.56 As such, deleterious substrate selection may be a feature
of obesity-related cardiomyopathy as it is in other myocardial
diseases, intimately linking energetic performance and
mortality.56,57

In addition, positron emission topography studies have shown
that in human obesity myocardial fatty acid uptake is increased
and myocardial efficiency reduced (if calculated as cardiac work/
oxygen usage).58 This is in keeping with the increased utilization
of fatty acids for ATP production, and suggests either a decoupling

of fatty acid oxidation and ATP production or futile cycling of
substrates in the obese heart with energy wastage.59 Elevations in
FFA levels are thought to increase mitochondrial uncoupling, and
energy wastage, via increased myocardial uncoupling protein 3
expression.60,61As diastole is more susceptible to ATP shortage
than systole, this would then lead to a mechanism by which
reduced high-energy phosphate levels, caused by increased
mitochondrial uncoupling as a result of elevated FFA levels, may
manifest as diastolic dysfunction, an almost universal finding in
obesity.10,11

This shift towards fatty acid metabolism appears to be a
combination of reduced insulin-induced GLUT4 (glucose trans-
porter type-4)-mediated glucose uptake,62,63 suppressed glycolysis
in the cytosol and reduced PDH flux in the mitochondria, reducing
carbohydrate oxidation. Although the complexities of the
inhibition of carbohydrate metabolism are not fully elucidated,
the inhibition of glucose oxidation by fatty acids at the level of the
PDH complex is universally reported, and has been termed the
glucose-fatty acid or Randle cycle.64–66 Up until very recently, the
vast majority of experimental data for altered substrate selection
in obesity and insulin resistance were from ex vivo and in vitro
studies. These studies are however limited, in that most generate
steady-state, rather than real-time, information. The development
of hyperpolarized 13C magnetic resonance, in which the 13C signal
is amplified by 410 000-fold, provides a solution to this and
has allowed real-time visualization of substrate uptake and
metabolism. So far, these studies have been focused primarily
on PDH activity, which, given its pivotal position in the glucose–
fatty acid cycle, has allowed further insight into cardiac substrate
selection67 and have again shown that in vivo real-time PDH
activity is decreased in diabetic68 and high-fat diet animal
models.69

Furthermore, in addition to the effects of increased fatty acid
uptake and utilization on the production of the electrochemical
gradient that powers ATP production, there is now evidence that
there are intrinsic defects in the metabolic machinery of the
electron transport chain (complexes I, III and IV) in human and
animal models of obesity, with electron transport chain function
and efficiency being reduced.70–73,35

As a result of the evidence that substrate selection alters
myocardial efficiency, several novel therapies have been evalu-
ated in the setting of ischemia, a situation where reducing
myocardial oxygen consumption without decreasing cardiac work
would be beneficial. In these settings, a shift in the proportions of
ATP generated from fatty acid oxidation towards glucose
oxidation would provide the heart with an efficient method to
maintain a constant fuel source in the face of hypoxia. To date,
several partial fatty acid oxidation inhibitors acting either via
CPT-1 (Perhexiline)74 or via directly inhibiting fatty acid oxidation
(Trimetazidine) have been shown to be beneficial in heart failure,
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ischemic heart disease and animal models of pulmonary
hypertension.75,76 However, therapies aimed at altering substrate
metabolism in obesity have been limited to ischemia reperfusion
models,77 and further investigation of the effects of fatty acid
oxidation inhibitors are warranted in obesity.

CARDIAC ENERGETICS AND OBESITY
Heart failure, a well-documented sequelae of obesity,8 is
associated with deranged cardiac energetics,1 that is, a
decreased efficiency of substrate utilization to create the ATP
necessary to drive cardiac contraction. This has also been
demonstrated in other cardiovascular disorders such a
hypertensive heart disease and diabetes.24,25 Using 31P magnetic
resonance spectroscopy, cardiac energetics can be assessed by
quantifying the relative concentrations of phosphocreatine (PCr)
and ATP in the myocardium to derive the PCr/ATP ratio, a sensitive
index of the energetic state of the heart. In heart failure, the PCr/
ATP ratio correlates with LV function26 and clinical status,27 and
has been shown to be a better prognostic indicator than LV
ejection fraction.28 Improving cardiac metabolism has been
postulated as a novel treatment of heart failure.23,29 It has been
shown that in animal models of obesity35 and in humans with no
other co-morbidity, abnormally low PCr/ATP ratios occur at rest,
potentially due to, in addition to changes in substrate utilization, a
loss of the total creatine pool in proportion to the loss of PCr, as
occurs in many other forms of hypertrophy.1,78–81 Furthermore,
this has been linked to altered cardiac diastolic function and is
exacerbated during catecholamine stress.80

MITOCHONDRIAL METABOLISM AND LIPOTOXICITY IN
OBESITY
Cardiac mitochondria contain a DNA genome that encodes some
of the proteins required for electron transport complexes I, III, and
IV, and in addition, complex V. The remainder of the respiratory
subunits, and all of the proteins required for substrate metabo-
lism, are encoded by separate nuclear genes.82 It is becoming
clear that in obesity, changes in both nuclear and mitochondrial
transcription are present and are important in the production of
the observed changes in cardiac metabolism.61

One of the key controllers of nuclear gene transcription, which
regulates myocardial mitochondrial fatty acid oxidation, is the
peroxisome proliferator-activated receptors (PPARs),83 which,
when activated, induce perixosome proliferation. Peroxisomes
have multiple metabolic roles, which include long- and very long-
chain fatty acid oxidation.84 Three PPAR receptors have been
identified, PPARg, PPARd and PPARa, all with different tissue
expression. PPARa is expressed in the myocardium85 and is the
primary transcriptional regulator of fat metabolism in tissues with
the highest rates of fatty acid oxidation.86 Activation of PPARa in
the heart increases the expression of several genes involved in
fatty acid metabolism including the following: (a) cardiac
myocellular fatty acid uptake (fatty acid transport protein, FAT/
CD36, fatty acid-binding protein, acyl-CoA synthetase;87–89 (b)
mitochondrial fatty acid uptake via CPT I;90 and (c) mitochondrial
and peroxisomal fatty acid b-oxidation via medium-chain acyl-CoA
dehydrogenase, long-chain acyl-CoA dehydrogenase, very long-
chain acyl-CoA dehydrogenase and Acyl-CoA Oxidase, respectively
(Figure 3).90

In the setting of insulin resistance, such as obesity, the heart
initially adapts to increases in circulating fatty acid levels by
increasing PPARa, resulting in a compensatory increase in
myocardial fatty acid uptake and b-oxidation,91 which is
believed to limit cardiac ectopic lipid accumulation. A further
protective mechanism against ectopic cardiac fat deposition has
been suggested in obese animal models, with increased cardiac
expression of microsomal triglyceride transfer protein and

increased formation of apolipoprotein B-containing lipoproteins,
which are then secreted by cardiomyocytes.92

However, despite these initial adaptive/protective mechanisms,
the potential for cardiac lipotoxicity in obesity has been
described.93 Fatty acid inhibition of myocardial glucose use
appears to be one important contributing factor.94,95 Exposure
of the heart to high levels of fatty acids can cause accumulation of
lipids within cardiomyocytes increasing the intracellular pool of
long-chain fatty acyl-CoA, which provides a fatty acid substrate for
non-oxidative processes, including triacylglycerol, diacylglycerol
and ceramide synthesis, which can lead to cell dysfunction, insulin
resistance and, potentially, apoptotic cell death. A clear link
between lipid accumulation and cardiomyopathy has now been
established in several transgenic mouse models in which the rate
of lipid uptake or esterification of fatty acids by the heart was
increased or the capacity for oxidation of fatty acids was reduced
in the mitochondria.93,96

In addition to the PPARa-mediated increases in fatty acid
oxidation, cardiac myocytes from Zucker obese rats have a larger
proportion of FAT/CD3697,98 located at the plasma membrane
when compared with Zucker lean rats.99 Normal insulin-mediated
translocation of FAT/CD36 is not seen in Zucker obese rats,
supporting the notion that a substantial portion of the FAT/CD36
pool is permanently relocated to the sarcolemma in the heart
in obesity, and that this enables triglyceride accumulation via
increased fatty acid uptake.100 GLUT4 expression is also altered by
excessive nutrient intake. In normal cardiac tissue, insulin causes
the mobilization of GLUT4 from intracellular stores to the
sarcolemma. However, in obesity and insulin resistance this
process is reduced. When put together with the evidence of
altered FAT/CD36 positioning, this suggests that excessive
nutritional intake causes a pattern of distribution of FAT/CD36
and GLUT4, which is directed towards increased fatty acid uptake
and ectopic fat deposition.100

Although there is good evidence that lipid accumulation can
cause cardiac dysfunction, whether or not the accumulation
of triglyceride in the heart is a purely maladaptive process
contributing to cardiac dysfunction has recently come under
scrutiny. There is now alternative evidence to suggest that cardiac
triglyceride accumulation may be providing a protective role
against fatty acid-induced lipotoxicity via limiting the accumula-
tion of ceramides and diacylglycerols.101 However, regardless of
whether ectopic lipid deposition is a maladaptive or a protective
process, there is now strong evidence that myocardial steatosis
promotes the development of insulin resistance, cardiac
hypertrophy, impaired cardiac function and fatty acid-induced
programmed cell death, and interstitial fibrosis.102

ADIPOKINE REGULATION OF MYOCARDIAL METABOLISM
It is now well established that adipose tissue secretes a range of
adipokines (for example, leptin, adiponectin, resistin, ghrelin,
visfatin) that alter fat metabolism.103 Obesity affects the levels of
these hormones, and two of these, namely leptin and adiponectin,
have been shown to modulate myocardial substrate metabolism.
Adiponectin is believed to act via PPARa to stimulate fatty acid
metabolism, increase CPT1 activity and decrease malonyl-CoA
inhibition of CPT1 activity.104,105 However, as adiponectin
is significantly lowered by obesity106 and fatty acid metabolism
is increased, the full role of adiponectin in myocardial metabolism
in obesity remains unknown. In contrast, leptin increases
with increasing obesity,107 and has been shown to increase
myocardial fatty acid metabolism and decrease myocardial
glucose metabolism, in line with the observed changes seen in
obesity. This increase in fatty acid oxidation occurs independent of
changes in insulin signaling and PPARa transcriptional regulation,
but may be attributable to increased fatty acid transport proteins
on the plasma membrane.108 It has also been postulated that
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leptin has an important role in the prevention of cardiac
lipotoxicity by confining the storage of excess lipids to
adipocytes while simultaneously limiting the storage of
intracellular lipids in myocytes and other non-adipocytes.109

THE EFFECTS OF WEIGHT LOSS ON MYOCARDIAL
METABOLISM
As obesity is associated with increased myocardial fatty acid
uptake and oxidation, lipotoxicity and decreased myocardial
energetics, all known to be detrimental to cardiac function,
understanding the effects of weight loss are of increasing
importance. Weight-loss interventions have not only been shown
to decrease myocardial FFA uptake without changing insulin-
stimulated myocardial glucose uptake,110 but also to reduce
myocardial fatty acid oxidation (per gram of LV), and that this
decreased fatty acid oxidation is linked to decreased myocardial
oxygen consumption (myocardial oxygen uptake per gram of
LV).111 When put together, this strengthens the evidence that
increased fatty acid uptake and oxidation in obesity is linked to
decreased cardiac efficiency, and that weight loss partially
reverses these effects. In addition to this, moderate dietary
weight loss has been shown to significantly reduce myocardial
triglyceride content112 and improve both myocardial energetics
and diastolic function in obese subjects without cardiovascular
risk factors.113 Weight-loss surgery has also been shown to provide
early adjustments of the metabolic and neurohumoral pathways
involved in energy homeostasis and reverse obesity-related
hemodynamic, metabolic and cardiac dysfunction.114 Given this
clear benefit of the reduction in fatty acid oxidation rates that
accompany weight loss, further understanding of cardiac
metabolism in obesity may lead to therapeutic options to
modulate metabolism and treat cardiac dysfunction in obesity.

CONCLUSION
Obesity is an escalating problem and is linked to a spectrum of
cardiac dysfunction from subclinical changes in diastolic function
to severe systolic heart failure. There is now emerging evidence
that alterations in myocardial substrate selection in obesity
towards increased fatty acid oxidation and away from glucose
metabolism, results in decreased contractile efficiency and may
well underpin the susceptibility to contractile dysfunction in this
population. The heart in obesity is also characterized by an
accumulation of intracellular triglycerides and lipids that promote
lipotoxicity and dysfunction. As novel imaging techniques are now
providing a greater detail of this altered myocardial metabolism
in vivo, potential targets for therapeutic interventions aimed at
preventing and treating the cardiomyopathy of obesity via
altering myocardial metabolism are likely to become a reality.
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