Abstract
This study aimed to evaluate the in vitro activity of minocycline combined with fosfomycin against isolates of methicillin-resistant Staphylococcus aureus (MRSA). A total of 87 clinical isolates of MRSA collected from three Chinese hospitals were included in the study. The checkerboard method with determination of the fractional IC index (FICI) was used to determine whether antibiotic combinations act synergistically against these isolates. The susceptibility results for minocycline and fosfomycin were interpreted according to the most relevant criteria. The results demonstrated the following interactions: 76 isolates (87.4%) showed synergistic interactions (FICI⩽0.5) and 11 isolates (12.6%) showed indifferent interactions (0.5
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Klevens, R. M. et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298, 1763ā1771 (2007).
Stewarr, G. T. & Holt, R. J. Evolution of natural resistance to the newer penicillins. BMJ 1, 308ā311 (1963).
Chambers, H. F. The changing epidemiology of Staphylococcus aureus? Emerg. Infect. Dis. 7, 178ā182 (2001).
Hoban, D. J. et al. In vitro activity of tigecycline against 6792 gram-negative and gram-positive clinical isolates from the global tigecycline evaluation and surveillance trial (TEST Program, 2004). Diagn. Microbiol. Infect. Dis. 52, 215ā227 (2005).
Waites, K. B., Duffy, L. B. & Dowzicky, M. J. Antimicrobial susceptibility among pathogens collected from hospitalized patients in the United States and in vitro activity of tigecycline, a new glycylcycline antimicrobial. Antimicrob. Agents Chemother. 50, 3479ā3484 (2006).
Kahan, P. M. et al. The mechanism of action of fosfomycin (phosphomycin). Ann. NY Acad. Sci. 235, 364ā386 (1974).
Falagas, M. E. et al. Antimicrobial susceptibility of Gram-positive non-urinary isolates to fosfomycin. Int. J. Antimicrob. Agents. 35, 497ā499 (2010).
Falagas, M. E. et al. Fosfomycin for the treatment of infections caused by Gram-positive cocci with advanced antimicrobial drug resistance: a review of microbiological, animal and clinical studies. Expert. Opin. Investig. Drugs 18, 921ā944 (2009).
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Information Supplement M100-S19. CLSI 29, 58 (2009).
Moody, J. Synergism Testing: Broth Microdilution Checkerboard and Broth Macrodilution Method (ASM Press: Washington, DC, 2004).
Pillai, S. K., Moellering, R. C. & Eliopoulos, G. M. Antimicrobial combinations. in Antibiotics in Laboratory Medicine (ed. Lorian, V.) (Lippincott Williams and Wilkins, Philadelphia, PA, USA, 2005).
Bell, J. M. & Turnidge, J. D. SENTRY APAC Participants. High prevalence of oxacillin-resistant staphylococcus aureus isolates from hospitalized patients in Asia-Pacific and South Africa: results from SENTRY antimicrobial surveillance program, 1998ā1999. Antimicrob. Agents Chemother. 46, 879ā881 (2002).
Fluit, A. C. et al. Epidemiology and susceptibility of 3,051 Staphylococcus aureus isolates from 25 university hospitals participating in the European SENTRY study. J. Clin. Microbiol. 39, 3727ā3732 (2001).
Muto, C. A. et al. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and Enterococcus. Infect. Control. Hosp. Epidemiol. 24, 362ā386 (2003).
Verhoef, J. et al. A Dutch approach to meticillin-resistant Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis. 18, 461ā466 (1999).
Cepeda, J. A. et al. Isolation of patients in single rooms or cohorts to reduce spread of MRSA in intensive-care units: prospective two-centre study. Lancet. 365, 295ā304 (2005).
Wang, H. et al. In vitro activity of ceftobiprole, linezolid, tigecycline, and 23 other antimicrobial agents against Staphylococcus aureus isolates in China. Diagn. Microbiol. Infect. Dis. 62, 226ā229 (2008).
Steinkraus, G., White, R. & Friedrich, L. Vancomycin MIC creep in non-vancomycin-intermediate Staphyloccus aureus (VISA), vancomycin-susceptible clinical methicillin-resistant S. aureus (MRSA) blood isolates from 2001 to 2005. J. Antimicrob. Chemother. 60, 788ā794 (2007).
Chen, H. B. et al. The molecular characteristics heteroresistant vancomycin-intermediate staphylococcus aureus in China. Chin. J. Lab. Med. 32, 1223ā1227 (2009).
Green, S. L., Maddox, J. C. & Huttenbach, E. D. Linezolid and reversible myelosuppression. JAMA 285, 1291 (2001).
Falagas, M. E., Siempos, I. I. & Vardakas, K. Z. Linezolid versus glycopeptide or beta-lactam for treatment of Gram-positive bacterial infections: meta-analysis of randomised controlled trials. Lancet. Infect. Dis. 8, 53ā66 (2008).
MacDonald, H. et al. Pharmacokinetic studies on minocycline in man. Clin. Pharmacol. Ther. 14, 852ā861 (1974).
Carney, S. et al. Minocycline excretion and distribution in relation to renal function in man. Clin. Exp. Pharmacol. Physiol. 1, 299ā308 (1974).
Frossard, M. et al. Distribution and antimicrobial activity of fosfomycin in the interstitial fluid of human soft tissues. Antimicrob. Agents Chemother. 44, 2728ā2732 (2000).
Cirionia, O. et al. Experimental study on the efficacy of combination of a-helical antimicrobial peptides and vancomycin against Staphylococcus aureus with intermediate resistance to glycopeptides. Peptides 27, 2600ā2606 (2006).
Saeb, N. & Zineb, F. B. Activity of combinations of ceftazidime, imipenem and pefloxacin against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 22, 613ā617 (2003).
Petek, M. et al. Revealing fosfomycin primary effect on Staphylococcus aureus transcriptome: modulation of cell envelope biosynthesis and phosphoenolpyruvate induced starvation. BMC Microbiol. 10, 159 (2010).
de Cueto, M. et al. In vitro activity of fosfomycin against extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: comparison of susceptibility testing procedures. Antimicrob. Agents Chemother. 50, 368ā370 (2006).
Acknowledgements
This study was supported by the Ministry of Science and Technology, China (item code: 2008ZX09312).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Sun, C., Falagas, M., Wang, R. et al. In vitro activity of minocycline combined with fosfomycin against clinical isolates of methicillin-resistant Staphylococcus aureus. J Antibiot 64, 559ā562 (2011). https://doi.org/10.1038/ja.2011.52
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ja.2011.52
Keywords
This article is cited by
-
Ventilator-Associated Pneumonia (VAP) with Multidrug-Resistant (MDR) Pathogens: Optimal Treatment?
Current Infectious Disease Reports (2015)