Abstract
Natural products still continue to have an important role as a resource of various biologically active substances. Dereplication is a key process in natural product screening that analyzes the extracts of microbial fermentation broths or plant samples. In this review article, we describe and discuss the analytical techniques of dereplication and related technologies in the following sections: 1. Direct detection from microbial colonies. 2. Ultra high performance liquid chromatography (UHPLC)-MS profiling for library construction. 3. Micro-fractionation to identify active peaks. 4. Quantification of small-amount compounds. 5. Structure identification from small amounts. Using these techniques, the desired compound in the mixture library can be rapidly identified.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Demain, A. L. & Sanchez, S. Microbial drug discovery: 80 years of progress. J. Antibiot. 62, 5–16 (2009).
Liu, X. et al. Bioprospecting microbial natural product libraries from the marine environment for drug discovery. J. Antibiot. 63, 415–422 (2010).
Ōmura, S. Microbial metabolites: 45 years of wandering, wondering and discovering. Tetrahedron 67, 6420–6459 (2011).
Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75, 311–335 (2012).
Cragg, G. M. & Newman, D. J. Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta 1830, 3670–3695 (2013).
Bérdy, J. Thoughts and facts about antibiotics: where we are now and where we are heading. J. Antibiot. 65, 385–395 (2012).
Henrich, C. J. & Beutler, J. Matching the power of high throughput screening to the chemical diversity of natural products. Nat. Prod. Rep. 30, 1284–1298 (2013).
Takagi, M. & Shin-Ya, K. Construction of a natural product library containing secondary metabolites produced by actinomycetes. J. Antibiot. 65, 443–447 (2012).
Langlykke, A. CRC Handbook of Antibiotic Compounds (Bardy, J. et al.) (CRC: Boca Raton, FL, 1980).
Vanmiddlesworth, F. & Cannell, R. J. P. Dereplication and partial identification of natural products. Nat. Prod. Isolation 4, 279–327 (1998).
Hook, D. J., More, C. F., Yacoucci, J. J., Dubay, G. & O’Connor, S. Integrated biological-physicochemical system for the identification of antitumor compounds in fermentation broths. J. Chromatogr. 385, 99–108 (1987).
Hook, D. J. Approaches to automating the dereplication of bioactive natural products—the key step in high throughput screening of bioactive materials from natural sources. J. Biomol. Screen. 2, 145–152 (1997).
Ibrahim, A., Yang, L. & Johnston, C. Dereplicating nonribosomal peptides using an informatic search algorithm for natural products (iSNAP) discovery. Proc. Natl Acad. Sci. USA 109, 19196–19210 (2012).
Harris, G. A., Galhena, A. S. & Fernández, F. M. Ambient sampling/ionization mass spectrometry: applications and current trends. Anal. Chem. 83, 4508–4538 (2011).
Monge, M. E., Harris, G. A., Dwivedi, P. & Fernández, F. M. Mass spectrometry: recent advances in direct open air surface sampling/ionization. Chem. Rev. 113, 2269–2308 (2013).
Roach, P. J., Laskin, J. & Laskin, A. Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst 135, 2233–2236 (2010).
Watrous, J. et al. Mass spectral molecular networking of living microbial colonies. Proc. Natl Acad. Sci. USA 109, E1743–E1752 (2012).
Hsu, C.-C. et al. Real-time metabolomics on living microorganisms using ambient electrospray ionization flow-probe. Anal. Chem. 85, 7014–7018 (2013).
Van Berkel, G. J., Kertesz, V. & King, R. C. High-throughput mode liquid microjunction surface sampling probe. Anal. Chem. 81, 7096–7101 (2009).
Kai, M., González, I., Genilloud, O., Singh, S. B. & Svatoš, A. Direct mass spectrometric screening of antibiotics from bacterial surfaces using liquid extraction surface analysis. Rapid Commun. Mass Spectrom. 26, 2477–2482 (2012).
Zachariasova, M. et al. Analysis of multiple mycotoxins in beer employing (ultra) -high-resolution mass spectrometry. Rapid Commun. Mass Spectrom. 24, 3357–3367 (2010).
Vaclavik, L., Zachariasova, M., Hrbek, V. & Hajslova, J. Analysis of multiple mycotoxins in cereals under ambient conditions using direct analysis in real time (DART) ionization coupled to high resolution mass spectrometry. Talanta 82, 1950–1957 (2010).
Watrous, J. D. & Dorrestein, P. C. Imaging mass spectrometry in microbiology. Nat. Rev. Microbiol. 9, 683–694 (2011).
Kersten, R. D. et al. A mass spectrometry-guided genome mining approach for natural product peptidogenomics. Nat. Chem. Biol. 7, 794–802 (2011).
Mazzeo, J. R., Neue, U. D., Kele, M., Plumb, R. S. & Corp, W. A new separation technique takes advantage of sub-2-μm HPLC. Anal. Chem. 77, 460A–467A (2005).
Chan, E., Yap, S. & Lau, A. Ultra-performance liquid chromatography/time-of-flight mass spectrometry based metabolomics of raw and steamed Panax notoginseng. Mass Spectrom. 21, 519–528 (2007).
Dan, M. et al. Metabolite profiling of Panax notoginseng using UPLC-ESI-MS. Phytochemistry 69, 2237–2244 (2008).
Tchoumtchoua, J., Njamen, D., Mbanya, J. C., Skaltsounis, A.-L. & Halabalaki, M. Structure-oriented UHPLC-LTQ Orbitrap-based approach as a dereplication strategy for the identification of isoflavonoids from Amphimas pterocarpoides crude extract. J. Mass Spectrom. 48, 561–575 (2013).
Bertrand, S. et al. Detection of metabolite induction in fungal co-cultures on solid media by high-throughput differential ultra-high pressure liquid chromatography-time-of-flight mass spectrometry fingerprinting. J. Chromatogr. A 1292, 219–228 (2013).
Wolfender, J.-L. HPLC in natural product analysis: the detection issue. Planta Med. 75, 719–734 (2009).
Wolfender, J., Marti, G. & Queiroz, E. F. Advances in techniques for profiling crude extracts and for the rapid identification of natural products: Dereplication, Quality control and metabolomics. Curr. Org. Chem. 1808–1832 (2010).
Nordström, A., Want, E., Northen, T., Lehtiö, J. & Siuzdak, G. Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. Anal. Chem. 80, 421–429 (2008).
Moco, S. et al. A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol. 141, 1205–1218 (2006).
Wishart, D. S. Current progress in computational metabolomics. Brief. Bioinform. 8, 279–293 (2007).
De Vos, R. C. H. et al. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2, 778–791 (2007).
Suits, F., Lepre, J., Du, P., Bischoff, R. & Horvatovich, P. Two-dimensional method for time aligning liquid chromatography-mass spectrometry data. Anal. Chem. 80, 3095–3104 (2008).
Ito, T., Odake, T., Katoh, H., Yamaguchi, Y. & Aoki, M. High-throughput profiling of microbial extracts. J. Nat. Prod. 74, 983–988 (2011).
Kato, N., Takahashi, S., Nogawa, T., Saito, T. & Osada, H. Construction of a microbial natural product library for chemical biology studies. Curr. Opin. Chem. Biol. 16, 101–108 (2012).
Cuthbertson, D. J. et al. Accurate mass-time tag library for LC/MS-based metabolite profiling of medicinal plants. Phytochemistry 91, 187–197 (2013).
Potterat, O. & Hamburger, M. Concepts and technologies for tracking bioactive compounds in natural product extracts: generation of libraries, and hyphenation of analytical processes with bioassays. Nat. Prod. Rep. 30, 546–564 (2013).
Michel, T., Halabalaki, M. & Skaltsounis, A.-L. New concepts, experimental approaches, and dereplication strategies for the discovery of novel phytoestrogens from natural sources. Planta Med. 79, 514–532 (2013).
Lang, G. et al. Bioactivity profiling using HPLC/microtiter-plate analysis: application to a New Zealand marine alga-derived fungus, Gliocladium sp. J. Nat. Prod. 69, 621–624 (2006).
Johnson, T. A. et al. Natural product libraries to accelerate the high-throughput discovery of therapeutic leads. J. Nat. Prod. 74, 2545–2555 (2011).
Johansen, K. T., Wubshet, S. G. & Nyberg, N. T. HPLC-NMR revisited: using time-slice high-performance liquid chromatography-solid-phase extraction-nuclear magnetic resonance with database-assisted dereplication. Anal. Chem. 85, 3183–3189 (2013).
Wagenaar, M. M. Pre-fractionated microbial samples – the second generation natural products library at Wyeth. Molecules 13, 1406–1426 (2008).
Strege, M. A. High-performance liquid chromatographic-electrospray ionization mass spectrometric analyses for the integration of natural products with modern high-throughput screening. J. Chromatogr. B Biomed. Sci. Appl. 725, 67–78 (1999).
Bohni, N. et al. Integration of microfractionation, qNMR and zebrafish screening for the in vivo bioassay-guided isolation and quantitative bioactivity analysis of natural products. PLoS One 8, e64006 (2013).
Nielsen, K. Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography–UV–mass spectrometry methodology. J. Chromatogr. A 1002, 111–136 (2003).
Nielsen, K. F., Månsson, M., Rank, C., Frisvad, J. C. & Larsen, T. O. Dereplication of microbial natural products by LC-DAD-TOFMS. J. Nat. Prod. 74, 2338–2348 (2011).
Boswell, P. G., Schellenberg, J. R., Carr, P. W., Cohen, J. D. & Hegeman, A. D. A study on retention ‘projection’ as a supplementary means for compound identification by liquid chromatography-mass spectrometry capable of predicting retention with different gradients, flow rates, and instruments. J. Chromatogr. A 1218, 6732–6741 (2011).
Ridder, L. et al. Automatic chemical structure annotation of an LC−MS(n) based metabolic profile from green tea. Anal. Chem. 85, 6033–6040 (2013).
Konishi, Y. et al. Molecular formula analysis by an MS/MS/MS technique to expedite dereplication of natural products. Anal. Chem. 79, 1187–1197 (2007).
Horai, H. et al. MassBank: a public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 45, 703–714 (2010).
López-Pérez, J. L., Therón, R., del Olmo, E. & Díaz, D. NAPROC-13: a database for the dereplication of natural product mixtures in bioassay-guided protocols. Bioinformatics 23, 3256–3257 (2007).
Holt, T. G. The design and development of an integrated natural products screening database. J. Biomol. Screen. 5, 421–433 (2000).
Månsson, M. et al. Explorative solid-phase extraction (E-SPE) for accelerated microbial natural product discovery, dereplication, and purification. J. Nat. Prod. 73, 1126–1132 (2010).
Singh, S. B. et al. Occurrence, distribution, dereplication and efficient discovery of thiazolyl peptides by sensitive-resistant pair screening. J. Antibiot. (Tokyo) 66, 599–607 (2013).
Kim, H. J., Jee, E. H., Ahn, K. S., Choi, H. S. & Jang, Y. P. Identification of marker compounds in herbal drugs on TLC with DART-MS. Arch. Pharm. Res. 33, 1355–1359 (2010).
Lane, S. et al. Toward single-calibrant quantification in HPLC. A comparison of three detection strategies: evaporative light scattering, chemiluminescent nitrogen, and proton NMR. Anal. Chem. 77, 4354–4365 (2005).
Cremin, P. A & Zeng, L. High-throughput analysis of natural product compound libraries by parallel LC-MS evaporative light scattering detection. Anal. Chem. 74, 5492–5500 (2002).
Hutchinson, J. P. et al. Comparison of the response of four aerosol detectors used with ultra high pressure liquid chromatography. J. Chromatogr. A 1218, 1646–1655 (2011).
Adnani, N., Michel, C. R. & Bugni, T. S. Universal quantification of structurally diverse natural products using an evaporative light scattering detector. J. Nat. Prod. 75, 802–806 (2012).
Vervoort, N., Daemen, D. & Török, G. Performance evaluation of evaporative light scattering detection and charged aerosol detection in reversed phase liquid chromatography. J. Chromatogr. A 1189, 92–100 (2008).
Hasada, K. et al. Quantitative determination of atractylon in Atractylodis Rhizoma and Atractylodis Lanceae Rhizoma by 1H-NMR spectroscopy. J. Nat. Med. 64, 161–166 (2010).
Pauli, G. F., Jaki, B. U. & Lankin, D. C. A routine experimental protocol for qHNMR illustrated with Taxol. J. Nat. Prod. 70, 589–595 (2007).
Farrant, R. D. et al. NMR quantification using an artificial signal. Magn. Reson. Chem. 48, 753–762 (2010).
Lang, G. et al. Evolving trends in the dereplication of natural product extracts: new methodology for rapid, small-scale investigation of natural product extracts. J. Nat. Prod. 71, 1595–1599 (2008).
Wolfender, J., Queiroz, E. F. & Hostettmann, K. The importance of hyphenated techniques in the discovery of new lead compounds from nature. Expert Opin. Drug Discov. 1, 237–260 (2006).
Jaroszewski, J. W. Hyphenated NMR methods in natural products research, part 1: direct hyphenation. Planta Med. 71, 691–700 (2005).
Jaroszewski, J. W. Hyphenated NMR methods in natural products research, Part 2: HPLC-SPE-NMR and other new trends in NMR hyphenation. Planta Med. 71, 795–802 (2005).
Williamson, R. T. et al. New diffusion-edited NMR experiments to expedite the dereplication of known compounds from natural product mixtures. Org. Lett. 2, 289–292 (2000).
Cassani, J., Nilsson, M. & Morris, G. A. Flavonoid mixture analysis by matrix-assisted diffusion-ordered spectroscopy. J. Nat. Prod. 75, 131–134 (2012).
Inokuma, Y. et al. X-ray analysis on the nanogram to microgram scale using porous complexes. Nature 495, 461–466 (2013).
Genilloud, O. et al. Current approaches to exploit actinomycetes as a source of novel natural products. J. Ind. Microbiol. Biotechnol. 38, 375–389 (2011).
Acknowledgements
We thank Professor Yoshikazu Takahashi for giving us the opportunity to prepare this review. We also thank Drs Hideki Sato, Tetsuo Kojima, Takamichi Odake, Yoshie Nagahashi and Hideyuki Katoh for helpful discussion. Editing support was provided by Chugai Editing Services at Chugai Pharmaceutical Co., Ltd.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ito, T., Masubuchi, M. Dereplication of microbial extracts and related analytical technologies. J Antibiot 67, 353–360 (2014). https://doi.org/10.1038/ja.2014.12
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ja.2014.12
Keywords
This article is cited by
-
Testacosides A–D, glycoglycerolipids produced by Microbacterium testaceum isolated from Tedania brasiliensis
Applied Microbiology and Biotechnology (2024)
-
Isolation of new streptimidone derivatives, glutarimide antibiotics from Streptomyces sp. W3002 using LC-MS-guided screening
The Journal of Antibiotics (2020)
-
Identification of new geldanamycin derivatives from unexplored microbial culture extracts using a MS/MS library
The Journal of Antibiotics (2017)
-
Enhanced dereplication of fungal cultures via use of mass defect filtering
The Journal of Antibiotics (2017)
-
Dereplication strategies in natural product research: How many tools and methodologies behind the same concept?
Phytochemistry Reviews (2017)


