Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Personal exposure monitoring wearing protocol compliance: An initial assessment of quantitative measurement

Abstract

Personal exposure sampling provides the most accurate and representative assessment of exposure to a pollutant, but only if measures are implemented to minimize exposure misclassification and reduce confounders that may cause misinterpretation of the collected data. Poor compliance with personal sampler wearing protocols can create positive or negative biases in the reported exposure concentrations, depending on proximity of the participant or the personal sampler to the pollutant source when the monitor was not worn as instructed. This paper presents an initial quantitative examination of personal exposure monitor wearing protocol compliance during a longitudinal particulate matter personal exposure monitoring study of senior citizens of compromise health in North Carolina. Wearing compliance varied between participants because of gender or employment status, but not longitudinally or between cohorts. A minimum waking wearing compliance threshold, 0.4 for this study of senior citizens, is suggested to define when personal exposure measurements are representative of a participant's exposure. The ability to define a minimum threshold indicates data weighting techniques may be used to estimate a participant's exposure assuming perfect protocol compliance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Schwartz J. Daily deaths associated with air pollution in six US cities and short-term mortality displacement in Boston. In: Revised Analyses of Time-Series Studies of Air Pollution and Health. Special Report. Health Effects Institute: Boston, MA, 2003, pp. 219. Available at: http://pubs.healtheffects.org/view.php?id=4 (18 October, 2004).

    Google Scholar 

  2. Zanobetti A., and Schwartz J. Airborne particles and hospital admissions for heart and lung disease. In: Revised Analyses of Time-Series Studies of Air Pollution and Health. Special report. Health Effects Institute: Boston, MA, 2003, pp. 241–248. Available at: http://pubs.healtheffects.org/view.php?id=4 (18 October, 2004).

    Google Scholar 

  3. Dockery D., Pope III C.A., Xu X., Spengler J.D., Ware J.H., Fay M.E., Ferris B.J., and Speizer F.E. An association between air pollution and mortality in 6 US cities. N Engl J Med 1993: 329: 1753–1759.

    Article  CAS  Google Scholar 

  4. Rodes C.E., and Thornburg J. Breathing zone exposure assessment. In: Ruzer L.S., and Harley N.H. (Eds.) Aerosols Handbook: Measurement, Dosimetry, and Health Effects. CRC Press, Boca Raton, FL, 2004 p. 61.

    Google Scholar 

  5. Williams R., Suggs J., Creason J., Rodes C., Lawless P., Kwok R., Zweidinger R., and Sheldon L. The 1998 Baltimore Particulate Matter Epidemiology-Exposure Study: Part 1. Comparison of residential indoor, outdoor, and ambient particulate matter concentrations. J Expo Anal Environ Epidemiol 2000a: 10: 518–532.

    Article  CAS  Google Scholar 

  6. Rodes C.E., Lawless P.A., Evans G.F., Sheldon L.S., Williams R.W., Vette A.F., Creason J.P., and Walsh D. The relationships between personal PM exposures for elderly populations and indoor and outdoor concentrations for three retirement center scenarios. J Expo Anal Environ Epidemiol 2001: 11: 103–115.

    Article  CAS  Google Scholar 

  7. Thornburg J., Rodes C.E., Lawless P.A., Stevens C.D., and Williams R.W. A pilot study of the influence of residential HAC duty cycle on indoor air quality. Atmos Environ 2004: 38: 1567–1577.

    Article  CAS  Google Scholar 

  8. McBride S., Williams R., and Creason J. Bayesian hierarchical modeling of personal exposure to particulate matter. Atmos Environ 2007: 41: 6143–6155.

    Article  CAS  Google Scholar 

  9. Williams R., Rea A., Vette A., Croghan C., Whitaker D., Wilson H., Stevens C., McDow S., Burke J., Fortmann R., Sheldon L., Thornburg J., Phillips M., Lawless P., Rodes C., and Daughtrey H. The design and field implementation of the Detroit Exposure and Aerosol Research Study (DEARS). J Expo Sci Environ Epidemiol 2009: 19: 643–659.

    Article  CAS  Google Scholar 

  10. Rodes C., Lawless P., Thornburg J., Croghan C., Vette A., and Williams R. DEARS particulate matter relationships for personal indoor outdoor, central site settings for a general population cohort. Atmos Environ 2010: 44: 1386–1399.

    Article  CAS  Google Scholar 

  11. Wallace L., and Williams R. Use of personal-indoor-outdoor sulfur concentrations to estimate the infiltration factor, outdoor exposure factor, penetration coefficient, and deposition rate for individual homes. Environ Sci Technol 2005: 39: 1707–1714.

    Article  CAS  Google Scholar 

  12. Wallace L., Williams R., Rea A., and Croghan C. Continuous week long measurements of personal exposures and indoor concentrations of fine particles for 37 health-impaired North Carolina residents for up to four seasons. Atmos Environ 2006: 40: 399–414.

    Article  CAS  Google Scholar 

  13. Wallace W., Williams R., Suggs J., and Jones P. Estimating Contributions of Outdoor Fine Particles to Indoor Concentrations and Personal Exposures: Effects of Household Characteristics and Personal Activities. ORD Report (APM 214). EPA/600/R-023. Washington, DC, 2006.

    Google Scholar 

  14. Janssen N.A.H., Hoek G., and Brunekreef B., et al. Personal sampling of particles in adults: relation among personal, indoor, and outdoor air concentrations. Am J Epidemiol 1998: 147: 537–547.

    Article  CAS  Google Scholar 

  15. Adgate J.L., Ramachandran G., and Pratt G.C., et al. Spatial and temporal variability in outdoor, indoor, and personal PM2.5 exposure. Atmos Environ 2002: 36: 3255–3265.

    Article  CAS  Google Scholar 

  16. Liu L-J., Box M., Kalman D., Kaufman J., Koenig J., Larson T., Lumley T., Sheppard L., and Wallace L. Exposure assessment of particulate matter for susceptible population in Seattle. Environ Health Perspect 2003: 111: 909–918.

    Article  Google Scholar 

  17. Turpin B.J., Weisel C.P., Morandi M., Colome S., Stock T., Eisenreich S., and Buckley B. Relationships of Indoor, Outdoor, and Personal Air (RIOPA): part II. Analyses of concentrations of particulate matter species. Res Rep Health Eff Inst 2007: 130 (Part 2): 1–77; discussion 79-92.

    CAS  Google Scholar 

  18. Williams R., Suggs J., Rea A., Leovic K., Vette A., Croghan C., Sheldon L., Rodes C., Thornburg J., Ejire A., Herbst M., and Sanders Jr W. The Research Triangle Park particulate matter panel study: PM mass concentration relationships. Atmos Environ 2003a: 37: 5349–5363.

    Article  CAS  Google Scholar 

  19. Brook R., Shin H., Bard R., Burnett R., Vette A., Croghan C., Thornburg J., Rodes C., and Williams R. Exploration of the rapid effects of personal fine particulate matter exposure on arterial hemodynamics and vascular function during the same day. Environ Health Perspect 2011: 119: 688–694.

    Article  CAS  Google Scholar 

  20. Delfino R.J., Staimer N., Gillen D., Tjoa T., Sioutas C., Fung K., George S.C., and Kleinman M.T. Personal and ambient air pollution is associated with increased exhaled nitric oxide in children with asthma. Environ Health Perspect 2006: 114: 1736–1743.

    Article  CAS  Google Scholar 

  21. Pellizzari E., Lioy P., Quackenboss J., Whitmore R., Clayton A., Freeman N., Waldman J., Thomas K., Rodes C., and Wilcosky T. Population-based exposure measurements in EPA Region 5: A Phase I field study in support of the National Human Exposure Assessment Survey. J Environ Epi 1995: 5 (3): 327–358.

    CAS  Google Scholar 

  22. Lawless P.A., U.S. Patent 6,502,469B2, 2003.

  23. Ebelt S., Petkau A.J., Vedal S., Fisher T.V., and Brauer M. Exposure of chronic obstructive pulmonary disease patients to particulate matter: relationships between personal and ambient air concentrations. J Air Waste Manag Assoc 2000: 50: 1081–1094.

    Article  CAS  Google Scholar 

  24. Delfino R.J., Quintana P.J.E., Floro J., Gastañaga V.M., Samimi B.S., Kleinman M.T., Liu L.-J.S., Bufalino C., Wu C.-F., and McLaren C.E. Association of FEV1 in asthmatic children with personal and microenvironmental exposure to airborne particulate material. Environ Health Perspect 2004: 112: 932–941.

    Article  CAS  Google Scholar 

  25. Liu W., Zhang J., Zhang L., Turpin B., Weisel C., Morandi M., Stock T., Colome S., and Korn L. Estimating contributions of indoor and outdoor sources to indoor carbonyl concentrations in three urban areas of the United States. Atmos Environ 2006: 40: 2202–2214.

    Article  CAS  Google Scholar 

  26. Liu W., Zhang J., Korn L., Zhang L., Weisel C.P., Turpin B.J., Morandi M.T., Stock T.S., and Colome S. Predicting personal exposure to airborne carbonyls using residential measurements and time/activity data. Atmos Environ 2007: 41: 5280–5288.

    Article  CAS  Google Scholar 

  27. Williams R., Suggs J., Rea A., Sheldon L., Rodes C., and Thornburg J. The Research Triangle Park particulate matter panel study: modeling ambient source contribution to personal and residential PM mass concentrations. Atmos Environ 2003b: 37: 5365–5378.

    Article  CAS  Google Scholar 

  28. Howard-Reed C., Rea A.W., Zufall M.J., Burke J.M., Williams R.W., Suggs J.C., Sheldon L.S., Walsh D., and Kwok R. Use of a continuous nephelometer to measure personal exposure to particles during the U.S. Environmental Protection Agency Baltimore and Fresno panel studies. J Air Waste Manag Assoc 2000: 50: 1125–1132.

    CAS  Google Scholar 

  29. Rea A.W., Zufall M.J., Williams R.W., Sheldon L., and Howard-Reed C. The influence of human activity patterns on personal PM exposure: a comparative analysis of filter-based and continuous particle measurements. J Air Waste Manag Assoc 2001: 51: 1271–1279.

    Article  CAS  Google Scholar 

  30. Zhao W., Hopke P.K., Gelfand E.W., and Rabinovitch R. Use of an expanded receptor model for personal exposure analysis in schoolchildren with asthma. Atmos Environ 2007: 41: 4084–4096.

    Article  CAS  Google Scholar 

  31. Brook R., Bard R., Burnett R., Shin H., Vette A., Croghan C., Stevens C., Phillips M., Rodes C., Thornburg J., and Williams R. The associations between daily community and personal fine particulate matter levels with blood pressure and vascular function among non-smoking adults. J Occup Environ Med 2011: 68: 224–230.

    Article  Google Scholar 

Download references

Acknowledgements

The US Environmental Protection Agency, through its Office of Research and Development, partially funded the research described here through Contract 68-D-99-021 (RTI International), EP-D-04-065 and EP-D-68-00-206 (Alion Science and Technology), and EP-D-04-068 (Battelle Columbus Laboratories). Mention of trade names or commercial products does not constitute an endorsement or recommendation for use. Carry Croghan and Carvin Stevens of the US EPA are acknowledged for their assistance in data validation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Williams.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawless, P., Thornburg, J., Rodes, C. et al. Personal exposure monitoring wearing protocol compliance: An initial assessment of quantitative measurement. J Expo Sci Environ Epidemiol 22, 274–280 (2012). https://doi.org/10.1038/jes.2012.8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/jes.2012.8

Keywords

This article is cited by

Search

Quick links