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Bayesian spatiotemporal modelling for the assessment of
short-term exposure to particle pollution in urban areas

Monica Pirani', John Gulliver?, Gary W. Fuller' and Marta Blangiardo®

This paper describes a Bayesian hierarchical approach to predict short-term concentrations of particle pollution in an urban

environment, with application to inhalable particulate matter (PM;o) in Greater London. We developed and compared several
spatiotemporal models that differently accounted for factors affecting the spatiotemporal properties of particle concentrations. We
considered two main source contributions to ambient measurements: (i) the long-range transport of the secondary fraction of
particles, which temporal variability was described by a latent variable derived from rural concentrations; and (ii) the local primary
component of particles (traffic- and non-traffic-related) captured by the output of the dispersion model ADMS-Urban, which site-
specific effect was described by a Bayesian kriging. We also assessed the effect of spatiotemporal covariates, including type of site,
daily temperature to describe the seasonal changes in chemical processes affecting local PM;, concentrations that are not
considered in local-scale dispersion models and day of the week to account for time-varying emission rates not available in
emissions inventories. The evaluation of the predictive ability of the models, obtained via a cross-validation approach, revealed that
concentration estimates in urban areas benefit from combining the city-scale particle component and the long-range transport
component with covariates that account for the residual spatiotemporal variation in the pollution process.
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INTRODUCTION

Concern over short- and long-term effects of outdoor air pollution
on health has led to great efforts to study appropriate exposure
assessment methods aimed at quantifying health risks.

Geographic information system (GIS)-based methods like land-use
regression models'? have been successfully applied to esti-
mate long-term (e.g. annual) ambient concentrations,® but these
techniques are not appropriate for short-term modelling as they do
not include the influence of both changing source emissions or
meteorology.

To provide accurate estimates of short-term air pollution
concentrations to use in health effect studies, researchers are
increasingly turning to statistical or deterministic dispersion
models. The former approach typically considers series of data
collected at monitoring sites and characterises these with spatial
or spatiotemporal structures; in this context, the Bayesian para-
digm has experienced a substantial increase in usage in the past
decade.* '° The latter approach simulates the dispersion of air
pollution concentrations through deterministic models based on
mathematical description of physical-chemical processes taking
place in the atmosphere. Because the measurements at ambient
monitoring stations can be sparse and irregularly spaced, as well
as affected by missing data, the use of deterministic dispersion
models has become increasingly popular owing to their more
comprehensive coverage over space and time. However, determi-
nistic models are affected by different sources of uncertainty
when compared with measurements, because the output
depends not only on accurately characterising source emissions,

meteorology and geographical features of the dispersion environ-
ment but also on the model configuration options selected by the
user (for instance, several numerical models present options to
apply diurnal, weekly and monthly profiles to the emission
sources).

With respect to the issue of numerical uncertainty in determini-
stic models, a critical role is played by the ambient measurements
as they are frequently used to develop, evaluate and calibrate the
air quality models. The process of calibration is somewhat
contentious but it is widely accepted that the use of measure-
ments can lead to improved model performance where some
inputs are not fully parameterised."’

Recently, approaches to tackle this problem have been focussed
on the combination of deterministic model output with observed
monitoring data.'>'® We follow these current approaches, but
differently from the main literature on this topic that is best suited
for combining data collected at different spatial resolutions
(observed concentrations collected at point level and output
from deterministic models at grid level), we suggest a methodo-
logy for exposure assessment operating exclusively at point level
scale. In particular, we provide an approach, under the Bayesian
framework, to obtain enhanced predictions of particle pollution
(PM) for use in short-term health effect studies.

In the context of exposure assessment, the successful modelling
of PM at a local or city scale is a frequent technical challenge that
requires information about regional background pollutant con-
centrations. This reflects the complexity of ambient PM that
comprises of primary particulates arising from local traffic and
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non-traffic emissions, and secondary particles formed by atmo-
spheric physical and chemical processes, such as condensation of
vaporised material or by-product of the oxidation of gases, mainly
during the course of long-range transport of pollutants.

In this paper, we worked with point-referenced time series
(daily) and considered several hierarchical models that differently
accounted for the relative contribution of regional and local
sources affecting the spatiotemporal properties of PM. Specifically,
we considered:

(1) A time-varying latent regional process for capturing the long-
range transport of PM. In our study, regional PM concentra-
tions were estimated through direct measurement of rural
background concentrations, using an additive approach as
suggested by Lenschow et al."®

A spatial local process for capturing the additional urban and
local primary PM component. In our application, a local-scale
air pollution dispersion model was used to describe this
component.

S

Moreover, we accounted for selected space- or time-varying
factors, which could have a direct influence on the pollution
process or could be used as proxies for other unmeasured variables.

We applied our proposed methodology to model inhalable PM
in Greater London (UK), namely particles with a diameter <10 um
(PM;), one of the air pollutants of most concern for public health
that has been linked to a range of serious cardiovascular and
respiratory health effects.?*2?

We assessed the predictive performance of the models using a
cross-validation approach.

Finally, we compared our approach with the one typically used
in the literature on spatiotemporal modelling of air pollution,
including random intercepts to account for spatial and temporal
dependencies.

MATERIALS AND METHODS
Data Description

The PM,, data (ug/m®) were daily average concentrations (midnight to
midnight) collected in the years 2002-2003 (728 days). This period was
selected to include several pollution episodes (i.e. periods of elevated
PM;0) and the 2003 European heat wave.”> The data were log-transformed
to achieve a Gaussian distribution. They came from three sources:

(1) Mass concentration measurements from the London Air Quality
Network (LAQN; www.londonair.org.uk): This monitoring network had 76
PM,, sites in 2002-2003, with some of these also affiliated with the
National Automatic Urban and Rural Network (AURN; http://uk-air.defra.-
gov.uk). Out of these sites, we selected 45 for which the proportion of
missing data, in each year, did not exceed 20%. The missing observations
were assumed to be missing at random. The average proportion of missing
data for the 45 sites in the study period was 5.1% (range: 0 — 17.4). The
mean distance between the selected sites was 16,967 m (range:
657 —45,298). The majority of measurements were made using the
Tapered Element Oscillating Microbalance method using TEOM 1400a and
1400ab analysers (Thermo Scientific). These instruments are known to
underestimate the PM;, concentrations owing to losses of semivolatile
constituents (such as ammonium nitrate and organic aerosols);***
therefore, a default adjustment factor of 1.3 was applied.?® Eight sites
were equipped with Beta Attenuation Monitors (Met-One BAM), where a
correction factor of 0.82 was applied according to the results of UK trails.?’

(2) Output from the high spatial resolution Air Dispersion Modelling System
(ADMS-Urban; CERC, Cambridge, UK):*®2° ADMS-Urban was used to
represent the local primary competent of PM;,. It simulates the
dispersion into the atmosphere of pollutants released from road traffic,
industrial and domestic sources across urban areas and integrates
emissions inventories with meteorological data. We obtained emissions
factors from the London Atmospheric Emissions Inventory (LAEI), which
contains data on road network geometry comprising about 60,000
individual road links attributed with traffic flows and composition. Roads
are represented as line sources in ADMS-Urban with a spatial accuracy of
<1m. Point and area source emissions were aggregated in the LAEIl to
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1km resolution grids. This is a relatively quick method for modelling
poorly defined or diffuse sources in the dispersion model. Dispersion from
road sources used a Gaussian plume model with a non-Gaussian
plume profile in convective conditions to account for the skewed
structure of the vertical component of turbulence. Grid sources were
modelled using a simple trajectory model. Output from both models
was combined to predict pollutant concentrations at point locations,
namely air pollution monitoring sites. Meteorological data included in
ADMS-Urban were obtained from the British Atmospheric Data Centre for
the nearest site.

(3) Mass measurements from rural monitoring sites: Background
concentrations, as proxy of the long range transport of PM,, were
sourced from two rural monitoring stations, approximately equidistant
from London: Harwell (near Didcot, Oxfordshire; 81 km north-west of
London, towards the West Midland conurbation) and Detling (Kent; 50 km
south-east of London towards continental pollution sources areas). The
Pearson’s correlation coefficient between the two time series was 0.6 (P-
value <0.001), indicating that these measurement sites provided different
information about the long-range transported air pollution affecting
London.

In addition, we considered the following set of covariates:

(1) Type of site, which accounted for different environmental conditions.
The LAQN monitoring sites were classified into different types, depending
on their location. Of the 45 sites selected for the study, 8 were suburban
sites (located in residential areas on the outskirts of London), 13 were
urban background sites (located away from major sources and broadly
representative of city-wide background concentrations), 20 were roadside
sites (located from 1 to 5 m from a major carriageway) and 4 were kerbside
sites (located within T m of a major road carriageway).

(2) Day of the week, which accounted for unknown changes in emissions
between weekdays and weekend days, because emission inventories are
not time-varying but only contain annual totals. The indicator variable for
day of the week was categorised as Monday-Friday, Saturday and Sunday
or Public Holiday.

(3) Average daily temperature to describe seasonal changes in chemistry
between primary and regional secondary PM;o. Other meteorological
variables were not considered as these are used in the ADMS-Urban model;
however, this does not include secondary PM;, formation, and thus daily
mean temperature was used as a surrogate for such processes. Over the
2002-2003 years, the average temperature, recorded at London Heathrow,
was 11.9 °C, with daily mean ranging between — 1.3 and 28.2°C.

Exploratory Data Analysis

Figure 1 presents the geographical location of the 45 monitoring sites
across Greater London by site type. As we found little difference between
the PM;o concentrations at suburban and urban background sites, we
aggregated these two categories.

Figure 2 shows the correlation of daily data for pairs of monitoring sites
as a function of their separation distance. The correlations were generally
high, also over long distances (>30,000 m), indicating that factors other
than distance may have a role in explaining the spatial variability of PM;,
levels.

Figure 3 presents the daily levels of PM;, across the 45 monitoring sites
sorted from the top to the bottom by decreasing longitude, during the 2
year in study.>® The daily values are displayed according to the tertiles
computed on the global data set to ensure the comparability of the time
series and assigned to low (brown), medium (pale green) and high (green)
categories of PM;, concentrations. The bottom of the plot shows the daily
median values across all the time series. The PM;, pollution episodes that
London experienced during February, March, April, August, September and
November 2003 are clearly visible. These episodes were mainly caused by
secondary PM,, from distant sources, with summer episodes also being
linked to photochemistry.3’ The November 2003 episode was associated
with Guy Fawkes Night fireworks and bonfires.>?

The analysis via cross-correlogram of the time series of PM;,
concentrations observed in Greater London and the local component of
PM,o captured from ADMS-Urban output, presented in Figure 4, shows
that the correlation was relatively high and positive at lag 0 (same day
pollution levels), suggesting that the numerical model captured the time
variation of PM;, observed at monitoring sites.

Modelling Approach

We denoted Z(t,s) as the log-transformed daily PM;, concentrations, with
t=1,.,T=728 (days) and s=1,..,n =45 (sites of the pollutant monitoring
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Figure 2. Correlation between pairs of monitoring sites as a function

of their separation distance.

network). We assumed that the observed monitoring data were
characterised by measurement error defined by a zero-mean Gaussian
white noise process. We specified a Gaussian likelihood for Z(t,s):
2

Z(t,s) ~ N(u(l’,s),a (s)) (1)
where p(t,s) represents the mean process driven by covariates varying over
space and time and o*(s) is the site-specific measurement error variance.”*
We considered a class of different nested statistical formulations for the
mean space-time process, u(t,s), that differently accounted for factors
affecting the spatiotemporal properties of particle concentrations.

© 2014 Nature America, Inc.

Location and siting characteristics of the air quality monitoring sites in Greater London selected for the study.

Model | represented a simple statistical structure where the daily
measurements at each monitoring site were assumed to be a function of a
residual mean concentration across the urban area and a latent pollutant
process described by the long-range transported proportion of particulate.
The time-varying latent regional process was included assuming that
concentrations at the city scale derive largely from information borrowed
from rural measurements. It assumed the form:

Model I:

u(t,s) = o+ e (1) 2)
where o is the residual intercept and p,(t) represents the mean of the
latent process.

In particular, let j denote several available rural background monitoring
sites around the metropolitan area, with j=1,..,J. We assumed that the
time series of pollution data from the rural monitoring sites are a reflection
of an underlying long-range transport of particles into the urban area,
measured with error:

Irt(t,j) ~ N (t), o () (3)

In our application, this latent process was driven by the two time
series of PM;o measured at the Harwell and Detling rural background sites
(j=12.

This simple model accounted for the temporal variability of the pollution
process, but did not incorporate a spatial structure. The model describes
the main hypothesis in the definition of air pollution exposure in ecological
time series studies, where the pollution estimates for a given study region,
are generally free from a spatial dimension, although these studies
typically use averaged ambient pollutant levels from one or more
background motoring stations to represent the exposure experienced by
a study population.

Model Il added to the constant, z, the local city primary PM;q
component described by ADMS-Urban, (t,s):

Model II:

u(t,s) = o+ By (s)e(t, s) (4)
A spatially varying coefficient model®> was used for this component to
capture the effect of site. We assumed (3, :[}1,1,...,[11,”)T to be distributed
according to a zero-centred multivariate Gaussian distribution
b1 ~MVN(O,w2H((p)), where w?>0 is the spatial effect variance parameter
and H represents the spatial correlation matrix. In this paper, Hy is
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Figure 4. Cross-correlogram between the time series of particle
concentrations in Greater London and the ADMS-Urban output (on
log-scale). The graph shows that at lag 0 (same day pollution levels),
there is a positive contemporaneous correlation between observed
data at monitoring sites and ADMS-Urban output.
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described by an exponential function®* f(d, ) = exp(— ¢d), where
d=|ls—s|| and |||| indicates the Euclidean distance between two
generic sites s and s/, and ¢ is the (non-negative) decay parameter that
represents the rate of decline of spatial correlation among sites over
distance. This spatial structure for the ADMS-Urban output provided a
realistic representation of the spatial variability observed in the explo-
rative analysis. However, we would expect a poor performance of this
model as it did not account for the temporal variability in the pollution

process.

Model Il included both the regional and the local primary PM;q
components:

Model IlII:

w(t,5) = o+ e (8) + Br ()4(t, 5) ()

Model IV was performed to explore the effect of the set of covariates
(without regional and local PM;, components):
Model IV:

ﬂ(tv S) =a+ ﬁz,type(s) + ﬁS,dow(t) + ﬁ4(t)temp(t) (6)

where type is the type of site, dow is the day of the week and temp is the
temperature. In particular, we used site type to represent possible
difference in concentration levels, as road and kerb sites are likely to
have higher concentrations as they are closer to traffic source of pollution;

© 2014 Nature America, Inc.



daily mean temperature to describe chemical processes affecting local
PM;o concentrations that are not considered in local-scale dispersion
models and day of week to account for time-varying emission rates that
are not described in emissions inventories. In Eqg. (6), the fixed-effects
coefficients ff, and f35 are unknown parameters for the variables site type
and day of the week. The vector /}4(1‘):([?4(1),...,ﬁ4(7'))T is the dynamic
parameter associated with the temperature built according to a Gaussian
second-order random walk (RW2), which was found provide the best
smoothness prior for this variable. It assumed the form: f,(t+2) ~
N(2B4(t+1) — B4(t), a2) for t=1,.,T— 2, where o2 is the variance. A RW2
acts as a smoothness prior based on the second difference and
penalises deviations from a linear trend.>® This prior, for regular time-
point, provides enough flexibility because of its invariance under
addition and it is computationally convenient because of its Markov
properties.3® The choice of this prior followed an initial explorative
analysis where we found that the relationship between temperature and
PM;, concentrations (not shown) was potentially well described by a cubic
smoothing spline. The RW2 is a discrete-time analogue of a cubic
smoothing spline.?’

Model V finally represented the full model that accounted for the
regional and local PM;, components and for the covariates:

Model V:

,Ll(t, S) =0+ :ulrt(r) + ﬁ1 (S)K(tv S) + ﬁz,type(s) + ﬁ3,dow(r) + [ﬁ(t)temp(t)
7)

Parameter Priors and Implementation

A Gaussian prior distribution with mean zero and variance 10° was
assigned to the intercept «, and to the fixed-effects coefficients 5, and fs.
To ensure identifiability, we fixed the first category of these two
parameters as zero (/7 =0 and fi3;=0). The same Gaussian prior was
chosen for the mean of the latent background process. Weakly informative
inverse-Gamma hierarchical priors were specified for the error variance
variables c2(s) ~1G(a,b), s = 1,..,n, and a,zn () ~ IG(c,d),j=1,...J, setting the
hyperpriors (a,b,cd) as 1G(1,0.1). Similarly, inverse-Gamma priors were
specified for the between-site variance component w? and the variance of
the RW2 03 with hyperparameters /G(1,0.1).

We assumed a discrete uniform prior distribution for the decay
parameter ¢ as suggested by Diggle and Ribeiro,*® with range chosen
based on prior beliefs about the minimum and maximum correlation at the
smallest and largest distances. Typically, locations close in space are
assumed to be characterised by a stronger degree of correlation, but we
did not want to assume a strong prior on it and we allowed for a range of
correlation between 0.10 and 0.99. For large separation distances, we
specified a range between 0.01 and 0.65.

The models were implemented in WinBUGS,* a freely available software
to perform Bayesian inference via Markov chain Monte Carlo (MCMC)
simulative method.*® Two parallel MCMC chains with different starting
values were run for each model. We ran 60,000 iterations with 50,000 burn-
in and thinned the Markov chains by a factor of 10, resulting in samples of
size 2000 to estimate the posterior distributions for the parameters of
interest. Posterior correlation was reduced by a grand mean centring of the
covariates.*! Convergence was assessed by checking the trace plots of the
samples, the estimated kernel density plots, the autocorrelation functions,
and a Monte Carlo errors <5% of the posterior standard deviation.

Comparison with Models Implemented with Varying Intercepts

The model formulation proposed in our paper deviates from the standard
spatiotemporal statistical models that include varying intercepts (baseline
concentrations) that are spatially or temporally correlated.*¢1%1® The
most common setting assumes that the spatial and temporal dependences
are introduced into the modelling in the form of random effects. Thus,
pollution concentrations characterised by a Gaussian likelihood are
typically related to a trend surface model together with additive-

independent random spatiotemporal effects that in a simple
implementation can assume the form:
u(t,s) = X(t,s) +0(t) +n(s) +(t,s) (8)

Here, f3 is a vector of regression coefficients associated with the covariates
X(t,s). The residual is partitioned into a temporal, 0(t), a spatial, 5(s), and an
independent process ¢(t,s), which is Gaussian with zero mean and a2(s)
variance. As a comparison with our approach, we have considered a model
implementation within this classical framework using the same set of data.

© 2014 Nature America, Inc.
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We developed five nested hierarchical structures that incorporated
separable random space and time effects.

The first model was given by:

Model la:

u(t,s) = 0(t) +n(s) 9)
The parameters 0(t) = (01,...00)" should capture the residual temporal
dynamics characterising the pollutant process. This temporal process was
described using an autoregressive first-order non-stationary model as
daily dependence in air particulate concentrations can be expected?
and was built as 0(t+1) ~ N(0(t),63) for t=1,.T—1. The term
17(s) = (1,.11n)" represents a spatially varying intercept that we assumed
described by a zero-centred Gaussian process with variance ag and an
exponential correlation function that depend upon the intersite distance
and the parameter ¢ quantifying the correlation decay.

Model lla also included the latent regional process defined as in Eq. (3):

Model lla:

u(t,s) = 0(t) +n(s) + e (1) (10)
Model llla added to the random effects of the urban local component of

PM;, described by ADMS-Urban:
Model llla:

u(t,s) = 0(t) +n(s) + 1 (s)L(t, ) (m

The space-varying slope ff; = (/31,1,...,[51,,,)T was built according to a Bayesian
isotropic kriging,>* as specified in our main analysis.

Model IVa incorporated both the long-range and the local components
of PM10:

Model IVa:

1(t, s) = 0) +n(s) + e (t) + By (5)£(t, 5) (12)
Model Va included exclusively the spatiotemporal random intercepts and
the covariates type site, day of the week and daily mean temperature:

Model Va:

w(t,s) = 0(t) +1(5) + Baype(s) + Bs.dow(e) + Ba(t)temp(t) (13)
Similar to the main analysis, we also tried to implement a full model as:

Model Via:

u(t,s) = 0(0) +n(s) + e (t) + Br (s)£(t, 5)

+ ﬁZ‘type(s) + ﬂ3,dow(r) + /34(t)temp(t)
However, it resulted overparameterised and yielded implausible predic-
tions, and thus we decided not to present the results from this model.

Models la-Va were specified assuming for the variance parameters o7

and aﬁ inverse-Gamma priors /G(1,0.1). The other priors were specified as in
the main analysis.

(14)

Performance Assessment

To compare our models, we partitioned the monitoring network into three
sets of sites following these steps: (i) we stratified the 45 sites by type
(urban/suburban, roadside and kerbside sites), (i) we chose a random
sample of nine sites, representative of the entire network (with respect to
the number of sites of each type) as validation data for testing the models,
and (iii) we retained the other 36 sites as training data to fit the models. We
repeated steps (i)-(iii) three times (so each site entered into the validation
data once).

To evaluate the predictive performance of the models, we compared the
predicted PM;, concentrations against the observed measurements on the
validation set via the following indices: the empirical coverage of 90%
credible intervals (90% Cl) coupled with their average length, the squared
correlation coefficient (R?) and the root mean square error (RMSE).'* Lower
values of RMSE indicate more similarity among observed measurements
and predicted values. To obtain these indices, for each model we used the
full posteriors from each Markov chain and we combined the predicted
values from the three sets. This same procedure was used to summarise
the results for the parameters evaluation.

Sensitivity Analysis
Sensitivity analysis was performed in order to:

(1) Assess the performance of our modelling approach in urban
environments that have a monitoring network less dense than in London.
The EU Air quality directive (2008/50/EC) stipulates the minimum
population-dependent measurement requirements for EU cities. With 36
European cities with populations above 1 million and 9 above 2 million,*?
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we considered that testing the methodology on a sample of 10
measurement sites (matching the minimum number of monitoring sites
for a city of 2.75 million population) would provide an assessment of
applicability in a typical city. A city of 2.75 million would be smaller than
the total area of Greater London. To this end, we considered the north-
west boroughs in Greater London only and selected 10 sites as training set
and 3 sites as validation set, representative of 3 site types, following the
methodology described for the main analysis.

(2) Investigate whether results remained essentially unchanged in the
presence of different prior distributions. We considered commonly used
inverse-Gamma priors for the variance parameters (measurement errors)
a2(s) and a,z,t (j): 1G(0.5,0.0005) and /G(0.1,0.1). For the spatial effect variance
parameter, »”, and the random walk variance parameter, 62, we tested the
prior 1G(0.001,0.001).

RESULTS
Predictive Performance

Table 1 shows the cross-validation summary statistics. The results are
reported on the original scale correcting for bias after logarithmic
transformation.** Moving from model | to model V, we noted a
progressive improvement in the prediction capability, with
exception of model Il. However, we found that the validation
indices improved heavily when the site-specific local component,
described by ADMS-Urban output, was included in addition to the
regional background component (as an example, the RMSE
decreased from 11.11 for model Il to 5.11 for model Ill). The
incorporation of the selected covariates in models IV and V
produced an additional increase in the cross-validation performance.

Figure 5 shows the Taylor diagrams**** for the models, over (a)
the whole study period and (b) a 2003 heat-wave event (days from
4 to 13 August 2003). This diagram represents a useful method for
evaluating predictive performance, as it visualises simultaneously
the centred RMSE (it is centred because the mean values of the
observed and predicted data are subtracted first), the correlation
coefficient (R) and the standard deviation of the observed and

predicted values. In detail, the observed variability (i.e. the
standard deviation) is plotted on the x-axis (specifically, the
magnitude of the variability is measured as the radial distance
from the origin of the plot), R is shown on the grey arc, whereas
the RMSE is indicated by the concentric brown dashed lines
emanating from the observed point. The Taylor diagram
performed on the entire study period (plot a) showed a quite
similar performance of the models from 3 to 5, with model V be
the best as presenting the highest correlation, the least RMSE and
a reasonable similar variability compared with the observations,
and the poor performance of model Il was also confirmed.
However, the Taylor diagram obtained on a 10-day heat-weave
event (plot b) to assess how the models performed in capturing
these events, pointed out differences, with models Il and model V
performing worst in comparison to models | and Ill. This result
could be explained by the fact that the heat-wave events of 2003
were dominated by the long-rang transport component.

Predictive Performance of Models Implemented with Varying
Intercepts

Table 2 presents the predictive ability of the models implemented
using the classical approach given by space- and time-varying
intercepts. Generally, the validation indices showed slightly worst
values when compared with the cross-validation results from our
modelling approach. However, for model llla including the
spatiotemporal random effects and the urban local component
of PM, we found lover prediction errors in comparison to model Il
of our main analysis. This result confirmed that without temporal
dependencies, the predictive capability of ADMS-Urban yield poor
performance.

Parameters Evaluation

In our modelling approach, we found that the time-varying latent
regional process described by p,.(t) had similar behaviour in

Table 2. Predictive performance of the models implemented using
Table 1. Predictive performance by model (on original scale). spatiotemporal varying intercepts (on original scale).
Models Average Coverage RMSE R? Models Average Coverage RMSE R?

width 90% Cl 90% Cl width 90% Cl 90% Cl

Model | 23.67 0.91 5.26 0.58 Model la 28.58 0.89 7.37 0.64
Model II 45.55 0.88 11.11 0.04 Model lla 29.90 0.88 7.58 0.64
Model Il 21.51 0.91 5.11 0.61 Model llla 2843 0.92 6.84 0.65
Model IV 22.20 0.89 5.04 0.61 Model IVa 28.59 0.91 6.89 0.64
Model V 20.40 0.89 4.75 0.63 Model Va 27.18 0.91 6.05 0.64
Abbreviations: Cl, credible intervals; RMSE, root mean square error. Abbreviations: Cl, credible intervals; RMSE, root mean square error.
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Figure 5.
(b) a 2003 heat-wave event (from 4 to 13 August 2003).
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Table 3. Posterior mean and 90% Cl for the fixed effects and for the variance parameters by model (on log-scale).
Parameters Model | Model Il Model lll Model IV Model vV
Mean 90% Cl Mean 90% CI Mean 90% Cl Mean 90% ClI Mean 90% Cl
o (intercept) 3.243 3.242, 3.244 3.315 3.309, 3.322 3.251 3.252, 3.253 3.325 3.302, 3.347 3.253 3.251, 3.254
B2, (road site)® — — — — — — 0.185 0.179, 0.192 0.143 0.142, 0.144
P2z (kerb site)? — —_ — —_ —_ — 0.282 0.269, 0.294 0.283 0.281, 0.284
B (Saturday)® — — — — — — —0.215 ~0.276, —0.032 ~0.033,
—0.157 —0.030
P33 (Sunday or Public Holiday)b — — — — — — —0.201 —0.335, —0.080 —0.082,
—0.074 —0.079
o%(s) (range among sites of the 0.061-0.202 0.163-0.168 0.038-0.074 0.048-0.052 0.033-0.050
posterior mean of variance)
w? (spatial effect variance for the — — 0.066 0.024, 0.152 0.041 0.040, 0.042 — — 0.042 0.041, 0.043
local PM component)
o2 (second order random walk — — — — — — 1111 0.950, 1.300 0.006 0.005, 0.007
variance for the temperature)
Abbreviations: Cl, credible intervals.
“Reference category: f3, (suburban/urban site).
PReference category: 3, (weekday).

Table 4. Predictive performance by model obtained in the sensitivity
analysis (on original scale).

Models Coverage Average RMSE R?
90% Cl width 90% Cl

Model | 0.93 31.52 6.91 0.52

Model II 0.87 47.01 11.36 0.02

Model Il 0.92 29.62 6.65 0.57

Model IV 0.89 28.54 6.65 0.53

Model V 0.88 23.29 5.38 0.61

Abbreviations: Cl, credible intervals; RMSE, root mean square error.

models |, lll and V. However, a visual inspection of the plot of the
posterior mean of p,(t) (not shown) pointed out a more evident
daily variability in model V.

The range (on log-scale) of the posterior mean of the spatial
coefficients, f:(s), associated with ADMS-Urban output, varied in
model Il from 0.005 to 0.333, in model Ill from 0.005 to 0.371,
whereas in model V this ranged from —0.001 to 0.238. This
suggested a weaker effect of the local PM,o, component when the
covariates were included in model V.

Through the analysis of the decay parameter, ¢, we found
coherent results in models II, Il and V, across all sets, for the spatial
correlation among sites. Specifically, we observed high correlation
at minimum distance between sites, ~0.97, that decayed
progressively, being ~0.50 at mean distance, and ~0.24 at
maximum distance.

Table 3 presents the posterior mean estimates and their 90% Cl
for the fixed effects and for the variance parameters. The residual
mean concentration, ¢, remained constant among the models.
Instead, we found a strong effect of the site type described by f,,
indicating that PM;, concentrations were greater for road and
kerb sites than for suburban/urban sites, as expected. A negative
relationship was estimated between PM;, and day of the week
(described by fi5), as the concentrations were lower on the
weekends than on weekdays.

The effect of the temperature on PM,, showed a considerable
variability, especially for coefficients related to the spring days.
The RW2 variance parameter a2 was definitely bigger in model IV
in comparison to model V.

Finally, with the exception of model I, we noted a progressive
decrease in the measurement error variance across the models.
This reduction underlined the contribution given by the adjust-
ment for covariates to explain part of the variability in the
estimated PM;, concentrations.

© 2014 Nature America, Inc.

Sensitivity Analysis Results
Table 4 describes the results related to the predictive ability of our
modelling approach on a restricted number of monitoring sites in
north-west London. We found that the indices were consistent
with those reported in the main analyses (Table 1).

We performed also an assessment of the sensitivity of findings
to prior details and these analyses showed that the results were
quite robust to these choices.

DISCUSSION

We have presented a Bayesian spatiotemporal approach for
modelling particulate pollution concentrations in urban area for
health risk studies. We combined air monitoring data with the
output from a local-scale air pollution model and explicitly solved
the problem of incorporating regional pollution concentrations
within the city-scale assessment. Moreover, we assessed the
effects of covariates to account for the residual spatiotemporal
variation of particle concentrations. We evaluated the predictive
performance of these statistical structures through a robust
procedure of cross-validation that allowed us to compare the
daily predictions with the observed PM;, concentrations within
three validation sets of sites, which represented different urban
environment (i.e. site types).

In particular, we applied our modelling approach to predict
PM;o concentrations in Greater London, using a latent regional
pollution process derived by rural sites to describe the long-range
transport PM;, component and the output from ADMS-Urban to
capture the local primary PM;, component.

ADMS-Urban is widely used for estimating urban-scale air
pollution for regulatory purposes and in epidemiological air
pollution studies.***” We found that the exclusive use of ADMS-
Urban to predict the PM;4 concentrations produces poor results. So
far, although the inclusion of ADMS-Urban, in addition to a regional
latent process, increases the predictive performance of the models,
we suggest that the use of this deterministic output to measure the
population exposure to PM in short-term epidemiological studies
should be enhanced with the combination of other information
sources characterising the study area, such as site-type or time-
varying emission factors linked to day of the week, as evidenced by
the strength of the covariates in our models.

In this implementation, we adopted an indicator variable for site
types that is actually quite crude. The use of a more localised
index of sites better reflecting land use and building geometry
(canyon orientation for example) by utilising GIS techniques may
further improve our model performance.

Journal of Exposure Science and Environmental Epidemiology (2014), 319-327
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The final aim of our study was to assess air PM exposure models
to use in short-term health effects studies in London. We therefore
worked with the dense monitoring network available owing to the
city size and the legal structures for local air quality management.
To assess the applicability of our approach in urban environment
with smaller number of monitoring sites, we performed a
sensitivity analysis restricting the study area to a part of London
matching the minimum requirements in EU directives. The results
suggested that our approach will also perform well in smaller
urban environments with more sparse monitoring networks,
which are typical of many European cities.

Methodologically, the models presented here deviate from the
standard space-time statistical modelling approach, which typically
presents varying intercepts.**®1%'® As we were including in our
models a set of covariates characterised by spatial and temporal
variation, we assumed only time- and space-varying regression
coefficients. To assess the plausibility of our approach in compar-
ison with a classical modelling scenario, we developed five models,
with independent spatiotemporal random effects. We assessed the
predictive capability of these structures, and we found that our
methodology, applied in an urban environment, performed better
than the classical approach. This evidence suggests that, in context
where local and urban primary emissions together with regional
background data are not available, the inclusion in the models of
independent error distributions is able to capture spatial and
temporal dependencies. However, in context of analysis, where the
researchers can perform extra modelling efforts, our proposed
models perform better than a classical approach.

Finally, the hierarchical methodology that we proposed in this
study provided a flexible way to model daily PM. This approach
could also be applied to other environmental space-time
processes (e.g. to model time series of different ambient primary
or secondary pollutants) and used to predict non-daily data
(e.g. hourly).
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