Abstract
The single nucleotide polymorphism (SNP) rs7566605 in the upstream region of the insulin-induced gene 2 (INSIG2) is associated with the obesity phenotype in many Caucasian populations. In Japanese, this association with the obesity phenotype is not clear. To investigate the relationship between rs7566605 and obesity in Japanese, we genotyped rs7566605 from severely obese subjects [n = 908, body mass index (BMI) ≥ 30 kg/m2] and normal-weight control subjects (n = 1495, BMI < 25 kg/m2). A case–control association analysis revealed that rs7566605 was significantly associated with obesity in Japanese. The P value in the minor allele recessive mode was 0.00020, and the odds ratio (OR) adjusted for gender and age was 1.61 [95% confidential interval (CI) = 1.24–2.09]. Obesity-associated phenotypes, which included the level of BMI, plasma glucose, hemoglobin A1c, total cholesterol, triglycerides, high-density lipoprotein (HDL) cholesterol, and blood pressure, were not associated with the rs7566605 genotype. Thus, rs7566605 in the upstream region of the INSIG2 gene was found to be associated with obesity, i.e., severe obesity, in Japanese.
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Barsh GS, Farooqi IS, O’Rahilly S (2000) Genetics of body-weight regulation. Nature 404:644–651
Boes E, Kollerits B, Heid IM, Hunt SC, Pichler M, Paulweber B, Coassin S, Adams TD, Hopkins PN, Lingenhel A, Wagner SA, Kronenberg F (2008) INSIG2 polymorphism is neither associated with BMI nor with phenotypes of lipoprotein metabolism. Obesity 16:827–833
Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JRB, Elliott KS, Lango H, Rayner NW, Shields B, Harries LW, Barrett JC, Ellard S, Groves CJ, Knight B, Patch AM, Ness AR, Ebrahim S, Lawlor DA, Ring SM, Ben-Shlomo Y, Jarvelin MR, Sovio U, Bennett AJ, Melzer D, Ferrucci L, Loos RJF, Barroso I, Wareham NJ, Karpe F, Owen KR, Cardon LR, Walker M, Hitman GA, Palmer CNA, Doney ASF, Morris AD, Smith GD, The Wellcome Trust Case Control Consortium, Hattersley AT, McCarthy MI (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–894
Goldstein JL, DeBose-Boyd RA, Brown MS (2006) Protein sensors for membrane sterols. Cell 124:35–46
Herbert A, Gerry NP, McQueen MB, Heid IM, Pfeufer A, Illig T, Wichmann HE, Meitinger T, Hunter D, Hu FB, Colditz G, Hinney A, Hebebrand J, Koberwitz K, Zhu X, Cooper R, Ardlie K, Lyon H, Hirschhorn JN, Laird NM, Lenburg ME, Lange C, Christman MF (2006) A common genetic variant is associated with adult and childhood obesity. Science 312:279–283
Hall DH, Rahman T, Avery PJ, Keavney B (2006) INSIG-2 promoter polymorphism and obesity related phenotypes: association study in 1428 members of 248 families. BMC Med Genet 7:83–88
Hinney A, Nguyen TT, Scherag A, Friedel S, Brönner G, Müller TD, Grallert H, Illig T, Wichmann HE, Rief W, Schäfer H, Hebebrand J (2007) Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS ONE 2:1361–1365
Hotta K, Nakata Y, Matsuo T, Kamohara S, Kotani K, Komatsu R, Itoh N, Mineo I, Wada J, Masuzaki H, Yoneda M, Nakajima A, Miyazaki S, Tokunaga K, Kawamoto M, Funahashi T, Hamaguchi K, Yamada K, Hanafusa T, Oikawa S, Yoshimatsu H, Nakao K, Sakata T, Matsuzawa Y, Tanaka K, Kamatani N, Nakamura Y (2008) Variations in the FTO gene are associated with severe obesity in the Japanese. J Hum Genet 53:546–553
Kopelman PG (2000) Obesity as a medical problem. Nature 404:635–643
Kumar J, Sunkishala RR, Karthikeyan G, Sengupta S (2007) The common genetic variant upstream of INSIG2 gene is not associated with obesity in Indian population. Clin Genet 71:415–418
Liu YJ, Liu XG, Wang L, Dina C, Yan H, Liu JF, Levy S, Papasian CJ, Drees BM, Hamilton JJ, Meyre D, Delplanque J, Pei YF, Zhang L, Recker RR, Froguel P, Deng HW (2008) Genome-wide association scans identified CTNNBL1 as a novel gene for obesity. Hum Mol Genet 17:1803–1813
Lyon HN, Emilsson V, Hinney A, Heid IM, Lasky-Su J, Zhu X, Thorleifsson G, Gunnarsdottir S, Walters GB, Thorsteinsdottir U, Kong A, Gulcher J, Nguyen TT, Scherag A, Pfeufer A, Meitinger T, Brönner G, Rief W, Soto-Quiros ME, Avila L, Klanderman B, Raby BA, Silverman EK, Weiss ST, Laird N, Ding X, Groop L, Tuomi T, Isomaa B, Bengtsson K, Butler JL, Cooper RS, Fox CS, O’Donnell CJ, Vollmert C, Celedón JC, Wichmann HE, Hebebrand J, Stefansson K, Lange C, Hirschhorn JN (2007) The association of a SNP upstream of INSIG2 with body mass index is reproduced in several but not all cohorts. PLoS Genet 3:627–633
Maes HHM, Neale MC, Eaves LJ (1997) Genetic and environmental factors in relative body weight and human adiposity. Behav Genet 27:325–351
Nielsen DM, Ehm MG, Weir BS (1998) Detecting marker-disease association by testing for Hardy–Weinberg disequilibrium at a marker locus. Am J Hum Genet 63:1531–1540
Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Pérusse L, Bouchard C (2006) The human obesity gene map: the 2005 update. Obesity 14:529–644
Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orrú M, Usala G, Dei M, Lai S, Maschio A, Busonero F, Mulas A, Ehret GB, Fink AA, Weder AB, Cooper RS, Galan P, Chakravarti A, Schlessinger D, Cao A, Lakatta E, Abecasis GR (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PloS Genet 3:1200–1210
Smith AJP, Cooper JA, Li LK, Humphries SE (2007) INSIG2 gene polymorphism is not associated with obesity in Caucasian, Afro-Caribbean and Indian subjects. Int J Obes 31:1753–1755
Tabara Y, Kawamoto R, Osawa H, Nakura J, Makino H, Miki T, Kohara K (2008) No association between INSIG2 Gene rs7566605 polymorphism and being overweight in Japanese population. Obesity 16:211–215
Takaishi K, Duplomb L, Wang MY, Li J, Unger RH (2004) Hepatic insig-1 or -2 overexpression reduces lipogenesis in obese Zucker diabetic fatty rats and in fasted/refed normal rats. Proc Natl Acad Sci USA 101:7106–7111
Tanabe A, Yanagiya T, Iida A, Saito S, Sekine A, Takahashi A, Nakamura T, Tsunoda T, Kamohara S, Nakata Y, Kotani K, Komatsu R, Itoh N, Mineo I, Wada J, Funahashi T, Miyazaki S, Tokunaga K, Hamaguchi K, Shimada T, Tanaka K, Yamada K, Hanafusa T, Oikawa S, Yoshimatsu H, Sakata T, Matsuzawa Y, Kamatani N, Nakamura Y, Hotta K (2007) Functional single-nucleotide polymorphisms in the secretogranin III (SCG3) gene that form secretory granules with appetite-related neuropeptides are associated with obesity. J Clin Endocrinol Metab 92:1145–1154
Wilson PWF, Grundy SM (2003) The metabolic syndrome: practical guide to origins and treatment: Part I. Circulation 108:1422–1425
Yabe D, Komuro R, Liang G, Goldstein JL, Brown MS (2003) Liver-specific mRNA for Insig-2 down-regulated by insulin: implications for fatty acid synthesis. Proc Natl Acad Sci USA 100:3155–3160
Yanagiya T, Tanabe A, Iida A, Saito S, Sekine A, Takahashi A, Tsunoda T, Kamohara S, Nakata Y, Kotani K, Komatsu R, Itoh N, Mineo I, Wada J, Masuzaki H, Yoneda M, Nakajima A, Miyazaki S, Tokunaga K, Kawamoto M, Funahashi T, Hamaguchi K, Tanaka K, Yamada K, Hanafusa T, Oikawa S, Yoshimatsu H, Nakao K, Sakata T, Matsuzawa Y, Kamatani N, Nakamura Y, Hotta K (2007) Association of single-nucleotide polymorphisms in MTMR9 gene with obesity. Hum Mol Genet 16:3017–3026
Yang L, Wu Y, Li H, Yu Z, Li X, Liu Y, Lin X, Chen Y (2008) Potential association of INSIG2 rs7566605 polymorphism with body weight in a Chinese subpopulation. Eur J Hum Genet 16:759–761
Yoshiike N, Kaneda F, Takimoto H (2002) Epidemiology of obesity and public health strategies for its control in Japan. Asia Pacific J Clin Nutr 11:S727–S731
Acknowledgments
This work was supported by Takeda Science Foundation (KH).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hotta, K., Nakamura, M., Nakata, Y. et al. INSIG2 gene rs7566605 polymorphism is associated with severe obesity in Japanese. J Hum Genet 53, 857–862 (2008). https://doi.org/10.1007/s10038-008-0317-8
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s10038-008-0317-8
Keywords
This article is cited by
-
Tumour biology of obesity-related cancers: understanding the molecular concept for better diagnosis and treatment
Tumor Biology (2016)
-
INSIG2 variants, dietary patterns and metabolic risk in Samoa
European Journal of Clinical Nutrition (2013)
-
The INSIG2 rs7566605 genetic variant does not play a major role in obesity in a sample of 24,722 individuals from four cohorts
BMC Medical Genetics (2009)
-
Association analyses of the INSIG2polymorphism in the obesity and cholesterol levels of Korean populations
BMC Medical Genetics (2009)
-
INSIG2 SNPs Associated With Obesity and Glucose Homeostasis Traits in Hispanics: The IRAS Family Study
Obesity (2009)