Abstract
To elucidate the mechanism underlying transport and processing defects from the viewpoint of enzyme folding, we constructed three-dimensional models of human acid α-glucosidase encompassing 27 relevant amino acid substitutions by means of homology modeling. Then, we determined in each separate case the number of affected atoms, the root-mean-square distance value and the solvent-accessible surface area value. The analysis revealed that the amino acid substitutions causing a processing or transport defect responsible for Pompe disease were widely spread over all of the five domains comprising the acid α-glucosidase. They were distributed from the core to the surface of the enzyme molecule, and the predicted structural changes varied from large to very small. Among the structural changes, we paid particular attention to G377R and G483R. These two substitutions are predicted to cause electrostatic changes in neighboring small regions on the molecular surface. The quality control system of the endoplasmic reticulum apparently detects these very small structural changes and degrades the mutant enzyme precursor (G377R), but also the cellular sorting system might be misled by these minor changes whereby the precursor is secreted instead of being transported to lysosomes (G483R).
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Hirschhorn, R. & Reuser, A. J. J. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C.R., Beaudet, A.L., Sly, W.S.& Valle, D.) 3389–3420 (McGraw-Hill, New York, 2001).
Hasilik, A. & Neufeld, E. F. Biosynthesis of lysosomal enzyme in fibroblasts. Phosphorylation of mannose residues. J. Biol. Chem. 255, 4946–4950 (1980).
Moreland, R. J., Jin, X., Zhang, X. K., Decker, R. W., Lee, K. L., Cauthron, R. D. et al. Lysosomal acid alpha-glucosidase consists of four different peptides processed from a single chain precursor. J. Biol. Chem. 280, 6780–6791 (2005).
Wisslaar, H. A., Kroos, M. A., Hermans, M. M. P., van Beeuman, J. & Reuser, A. J. J. Structural and functional changes of lysosomal acid α-glucosidase during intracellular transport and maturation. J. Biol. Chem. 268, 2223–2231 (1993).
Chien, Y. H., Chiang, S. C., Zhang, X. K., Keutzer, J., Lee, N. C., Huang, A. C. et al. Early detection of Pompe disease by newborn screening is feasible: results from the Taiwan screening program. Pediatrics 122, e39–e45 (2008).
Hermans, M. M., Van Leenen, D., Kroos, M. A., Beesley, C. E., Van Der Ploeg, A. T., Sakuraba, H. et al. Twenty-two novel mutations in the lysosomal alpha-glucosidase gene (GAA) underscore the genotype- phenotype correlation in glycogen-storage disease type II. Hum. Mutat. 23, 47–56 (2004).
Montalvo, A. L., Bembi, B., Donnarumma, M., Filocamo, M., Parenti, G., Rossi, M. et al. Mutation profile of the GAA gene in 40 Italian patients with late onset glycogen storage disease type II. Hum. Mutat. 27, 999–1006 (2006).
Kroos, M., Pomponio, R. J., van Vliet, L., Palmer, R. E., Phipps, M., Van der Helm, R. et al. GAA Database Consortium, Update of the Pompe disease mutation database with 107 sequence variant and a format for severity rating. Hum. Mutat. 29, e13–e26 (2008).
Mahuran, D. J. Biochemical consequences of mutations causing the GM2 gangliosidoses. Biochem. Biophys. Acta. 1455, 105–138 (1999).
Ernst, H. A., Leggio, L. L., Willemoës, M., Leonard, G., Blum, P. & Larson, S. Structure of the Sulfolobus solfatarics alpha-glucosidase: implications for domain conservation and substrate recognition in GH31. J. Mol. Biol. 358, 1106–1124 (2006).
Tajima, Y., Matsuzawa, F., Aikawa, S., Okumiya, T., Yoshimizu, M., Tsukimura, T. et al. Structural and biochemical studies on Pompe disease and a ‘pseudodeficiency of acid alpha-glucosidase’. J. Hum. Genet 52, 898–906 (2007).
Sim, L., Quezade-Calvillo, R., Sterchi, E. E., Nichols, B. L. & Rose, D. R. Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J. Mol. Biol. 375, 782–792 (2008).
Kundrot, C. E., Ponder, J. W. & Richards, F. M. Algorithms for calculation excluded volume and its derivative as a function of molecular conformation and their use in energy minimization. J. Comput. Chem. 12, 402–819 (1991).
Dudek, M. J. & Ponder, J. M. Accurate modeling of the intramolecular electrostatic energy of proteins. J. Comput. Chem. 16, 791–816 (1995).
Kong, M. J. & Ponder, J. W. Reaction field methods for off-center multipoles. J. Chem. Phys. 107, 481–492 (1997).
Pappu, R. V., Hart, R. W. & Ponder, J. W. Analysis and application of potential energy smoothing for global optimization. J. Phys. Chem. B. 102, 9725–9742 (1998).
Ren, P. & Ponder, J. W. Polarizable atomic multipole water model for molecular mechanics simulation. J. Phy. Chem. B. 107, 5933–5947 (2003).
Matsuzawa, F., Aikawa, S., Doi, H., Okumiya, T. & Sakuraba, H. Fabry disease: correlation between structural changes in alpha-galactosidase, and clinical and biochemical phenotype. Hum. Genet. 117, 317–328 (2005).
Saito, S., Ohno, K., Sugawara, K. & Sakuraba, H. Structural and clinical implications of amino acid substitutions in N-acetylgalactosamine-4-sulfatase: insight into mucopolysaccharidosis type VI. Mol. Genet. Metab. 93, 419–425 (2008).
Sugawara, K., Saito, S., Ohno, K., Okuyama, T. & Sakuraba, H. Structural study on mutant alpha-L-iduronidase: insight into mucopolysaccharidosis type I. J. Hum. Genet. 53, 467–474 (2008).
Ohno, K., Saito, S., Sugawara, K. & Sakuraba, H. Structural consequences of amino acid substitutions causing Tay-Sachs disease. Mol. Genet. Metab. 94, 462–468 (2008).
Sugawara, K., Ohno, K., Saito, S. & Sakuraba, H. Structural characterization of mutant alpha-galactosidases causing Fabry disease. J. Hum. Genet. 53, 812–824 (2008).
Weiner, S. J., Kallman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G. et al. A new force field for molecular mechanical simulation of nucleic acid and proteins. J. Am. Chem. Soc. 106, 765–784 (1984).
McDonald, I. K. & Thornton, J. M. Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238, 777–793 (1994).
Yoshimizu, M., Tajima, Y., Matsuzawa, F., Aikawa, S., Iwamoto, K., Kobayashi, T. et al. Binding parameters and thermodynamics of the interaction of imino sugars with a recombinant human acid alpha-glucosidase (alglucosidase alfa): insight into the complex formation mechanism. Clin. Chim. Acta. 391, 68–73 (2008).
Davies, G. & Henrissat, B. Structures and mechanism of glycosyl hydrolases. Structure 3, 853–859 (1995).
Farber, G. K. & Petsko, G. A. The evolution of α/β barrel enzyme. TIBS 15, 228–234 (1990).
Hoefsloot, L. H., Hoogeveen-Westerveld, M., Kroos, M. A., Van Beeumen, J., Oostra, B. A. & Reuser, A. J. J. Primary structure and processing of lysosomal α-glucosidase; homology with the intestinal sucrase-isomaltase complex. EMBO J 7, 1697–1704 (1998).
Hermans, M. M., Wisselar, H. A., Kroos, M. A., Oostra, B. A. & Reuser, A. J. J. Human lysosomal α-glucosidase: functional characterization of the glycosylation sites. Biochem. J 289, 681–686 (1993).
Fernandez-Hojas, R., Huie, M. L., Navarro, C., Dominguez, C., Roig, M., Lopez-Coronas, D. et al. Identification of six novel mutations in the acid alpha-glucosidase gene in three Spanish patients with infantile onset glycogen storage disease type II (Pompe disease). Neuromusc. Disord 12, 159–166 (2002).
Van den Hout, J. M., Kamphoven, J. H., Winkel, L. P., Arts, W. F., De Klerk, J. B., Loonen, M. C. et al. Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk. Pediatrics 113, e448–e457 (2004).
Gort, L., Coll, M. J. & Chabás, A. Glycogen storage disease type II in Spanish patients: high frequency of c.1076-1G>C mutation. Mol. Genet. Metab. 92, 183–187 (2007).
Müller-Felber, W., Horvath, R., Gempel, K., Podskarbi, T., Shin, Y., Pongratz, D. et al. Late onset Pompe disease: clinical and neurophysiological spectrum of 38 patients including long-term follow-up in 18 patients. Neuromusc. Disord. 17, 698–706 (2007).
Hermans, M. M., de Graaff, E., Kroos, M. A., Wisselaar, H. A., Willemsen, R., Oostra, B. A. et al. The conservative substitution Asp-645 → Glu in lysosomal alpha-glucosidase affects transport and phosphorylation of the enzyme in an adult patient with glycogen-storage disease type II. Biochem. J. 289, 687–693 (1993).
Kroos, M. A., Kirschner, J., Gellerich, F. N., Hermans, M. M., Van Der Ploeg, A. T., Reuser, A. J. et al. A case of childhood Pompe disease demonstrating phenotypic variability of p.Asp645Asn. Neuromusc. Disord. 14, 371–374 (2004).
Reuser, A. J. J. & Kroos, M. A. in Lysosomal Storage Disorders (eds Barranger, J.A. & Cabrera-Salazar, M.A.) 473–498 (Springer Science and Business Media, LLC, 2007).
Acknowledgements
We thank Dr J Ponder (the Department of Biochemistry and Molecular Biophysics, Washington University) for providing us with the TINKER software. This work was partly supported by grants from the Japan Society for the Promotion of Science; the High-Tech Research Center Project of the Ministry of Education, Science, Sports and Culture of Japan; the Ministry of Health and Welfare of Japan; the Japan Science and Technology Agency and CREST.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sugawara, K., Saito, S., Sekijima, M. et al. Structural modeling of mutant α-glucosidases resulting in a processing/transport defect in Pompe disease. J Hum Genet 54, 324–330 (2009). https://doi.org/10.1038/jhg.2009.32
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/jhg.2009.32
Keywords
This article is cited by
-
Mutations in GAA Gene in Tunisian Families with Infantile Onset Pompe Disease: Novel Mutation and Structural Modeling Investigations
Journal of Molecular Neuroscience (2020)
-
Genotype-phenotype correlation in Pompe disease, a step forward
Orphanet Journal of Rare Diseases (2014)
-
Biochemical and structural study on a S529V mutant acid α-glucosidase responsive to pharmacological chaperones
Journal of Human Genetics (2011)