Abstract
Recently, pharmacological chaperone therapy for Pompe disease with small molecules such as imino sugars has attracted interest. But mutant acid α-glucosidase (GAA) species responsive to imino sugars are limited. To elucidate the characteristics of a mutant GAA responsive to imino sugars, we performed biochemical and structural analyses. Among cultured fibroblast cell lines derived from Japanese Pompe patients, only one carrying p.S529V/p.S619R amino acid substitutions responded to 1-deoxynojirimycin (DNJ), and an expression study revealed that DNJ, N-butyl-deoxynojirimycin and nojirimycin-1-sulfonic acid increased the enzyme activity of the S529V mutant GAA expressed in Chinese hamster ovary cells. The results of western blotting analysis suggested that these imino sugars facilitated the intracellular transportation of the mutant GAA and stabilized it. Among these imino sugars, DNJ exhibited the strongest action on the mutant GAA. Structural analysis revealed that DNJ almost completely occupied the active site pocket, and interacted with amino acid residues comprising it through van der Waals contacts and hydrogen bonds. This information will be useful for improvement of pharmacological chaperone therapy for Pompe disease.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Hirschhorn, R. & Reuser, A. J. J. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver,C. R., Beaudet, A. L., Sly, W. S., & Valle, D.) 3389–3420 (McGraw-Hill, New York, 2001).
Hasilik, A. & Neufeld, E. F. Biosynthesis of lysosomal enzyme in fibroblasts. Phosphorylation of mannose residues. J. Biol. Chem. 255, 4946–4950 (1980).
Moreland, R. J., Jin, X., Zhang, X. K., Decker, R. W., Lee, K. L., Cauthron, R. D. et al. Lysosomal acid α-glucosidase consists of four different peptides processed from a single chain precursor. J. Biol. Chem. 280, 6780–6791 (2005).
Wisselaar, H. A., Kroos, M. A., Hermans, M. M. P., van Beeumen, J. & Reuser, A. J. J. Structural and functional changes of lysosomal acid α-glucosidase during intracellular transport and maturation. J. Biol. Chem. 268, 2223–2231 (1993).
Raben, N., Hill, V., Shea, L., Takikita, S., Baum, R., Mizushima, N. et al. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum. Mol. Genet. 17, 3897–3908 (2008).
Hermans, M. M., van Leenen, D., Kroos, M. A., Beesley, C. E., Van Der Ploeg, A. T., Sakuraba, H. et al. Twenty-two novel mutations in the lysosomal α-glucosidase gene (GAA) underscore the genotype-phenotype correlation in glycogen-storage disease type II. Hum. Mutat. 23, 47–56 (2004).
Montalvo, A. L., Bembi, B., Donnarumma, M., Filocamo, M., Parenti, G., Rossi, M. et al. Mutation profile of the GAA gene in 40 Italian patients with late onset glycogen storage disease type II. Hum. Mutat. 27, 999–1006 (2006).
Kroos, M., Pomponio, R. J., van Vliet, L., Palmer, R. E., Phipps, M., Van der Helm, R. et al. GAA Database Consortium, update of the Pompe disease mutation database with 107 sequence variants and a format for severity rating. Hum. Mutat. 29, e13–e26 (2008).
Ellgaard, L. & Helenius, A. Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell. Biol. 4, 181–191 (2003).
Kishnani, P. S., Nicolino, M., Voit, T., Rogers, R. C., Tsai, A. C., Waterson, J. et al. Chinese hamster ovary cell-derived recombinant human acid α-glucosidase in infantile-onset Pompe disease. J. Pediatr. 149, 89–97 (2006).
Raben, N., Fukuda, T., Gilbert, A. L., de Jong, D., Thurberg, B. L., Mattaliano, R. J. et al. Replacing acid α-glucosidase in Pompe disease: recombinant and transgenic enzymes are equipotent, but neither completely clears glycogen from Type II muscle fibers. Mol. Ther. 11, 48–56 (2005).
Parenti, G. Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinic. EMBO Mol. Med. 1, 268–279 (2009).
Okumiya, T., Kroos, M. A., Vliet, L. V., Takeuchi, H., Van der Ploeg, A. T. & Reuser, A. J. Chemical chaperones improve transport and enhance stability of mutant α-glucosidases in glycogen storage disease type II. Mol. Genet. Metab. 90, 49–57 (2007).
Parenti, G., Zuppaldi, A., Pittis, M. G., Tuzzi, M. R., Annunziata, I., Meroni, G. et al. Pharmacological enhancement of mutated α-glucosidase activity in fibroblasts from patients with Pompe disease. Mol. Ther. 15, 508–514 (2007).
Porto, C., Cardone, M., Fontana, F., Rossi, B., Tuzzi, M. R., Tarallo, A. et al. The pharmacological chaperone N-butyldeoxynojirimycin enhances enzyme replacement therapy in Pompe disease fibroblasts. Mol. Ther. 17, 964–971 (2009).
Tsunoda, H., Ohshima, T., Tohyama, J., Sasaki, M., Sakuragawa, N. & Martiniuk, F. Acid α-glucosidase deficiency: identification and expression of a missense mutation (S529V) in a Japanese adult phenotype. Hum. Genet. 97, 496–499 (1996).
Kanazawa, N., Miyamoto, T., Ihara, K., Miyoshi, Y., Sakai, N., Inui, K. et al. Novel mutation and a frequent mutation in Japanese juvenile patients with acid maltase deficiency. J. Inher. Metab. Dis. 26, 310 (2003).
Tsujino, S., Huie, M., Kanazawa, N., Sugie, H., Goto, Y., Kawai, M. et al. Frequent mutations in Japanese patients with acid maltase deficiency. Neuromuscul. Disord. 10, 599–603 (2000).
Tajima, Y., Matsuzawa, F., Aikawa, S., Okumiya, T., Yoshimizu, M., Tsukimura, T. et al. Structural and biochemical studies on Pompe disease and a ‘pseudodeficiency of acid alpha-glucosidase’. J. Hum. Genet. 52, 898–906 (2007).
Tajima, Y., Kawashima, I., Tsukimura, T., Sugawara, K., Kuroda, M., Suzuki, T. et al. Use of a modified α-N-acetylgalactosaminidase in the development of enzyme replacement therapy for Fabry disease. Am. J. Hum. Genet. 85, 569–580 (2009).
Sugawara, K., Saito, S., Sekijima, M., Ohno, K., Tajima, Y., Kroos, M. A. et al. Structural modeling of mutant α-glucosidases resulting in a processing/transport defect in Pompe disease. J. Hum. Genet. 54, 324–330 (2009).
Dudek, M. J. & Ponder, J. W. Accurate modeling of the intramolecular electrostatic energy of proteins. J. Comput. Chem. 16, 791–816 (1995).
Ren, P. & Ponder, J. W. Polarizable atomic multipole water model for molecular mechanics simulation. J. Phys. Chem. B. 107, 5933–5947 (2003).
Sugawara, K., Ohno, K., Saito, S. & Sakuraba, H. Structural characterization of mutant α-galactosidases causing Fabry disease. J. Hum. Genet. 53, 812–814 (2008).
McDonald, I. K. & Thornton, J. M. Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238, 777–793 (1994).
Yoshimizu, M., Tajima, Y., Matsuzawa, F., Aikawa, S., Iwamoto, K., Kobayashi, T. et al. Binding parameters and thermodynamics of the interaction of imino sugars with a recombinant human acid α-glucosidase (alglucosidase alfa): Insight into the complex formation mechanism. Clin. Chim. Acta. 391, 68–73 (2008).
Sugawara, K., Tajima, Y., Kawashima, I., Tsukimura, T., Saito, S., Ohno, K. et al. Molecular interaction of imino sugars with human α-galactosidase: insight into the mechanism of complex formation and pharmacological chaperone action in Fabry disease. Mol. Genet. Metab. 96, 233–238 (2009).
Flanagan, J. J., Rossi, B., Tang, K., Wu, X., Mascioli, K., Donaudy, F. et al. The pharmacological chaperone 1-deoxynojirimycin increases the activity and lysosomal trafficking of multiple mutant forms of acid alpha-glucosidase. Hum. Mutat. 30, 1683–1692 (2009).
Wisselaar, H. A., van Dongen, J. M. & Reuser, A. J. J. Effects of N-hydroxyethyl- 1-deoxynojirimycin (BAY m 1099) on the activity of neutral- and acid alpha-glucosidases in human fibroblasts and HepG2 cells. Clin. Chim. Acta 182, 41–52 (1989).
Boomkamp, S. D., Rountree, J. S. S., Neville, D. C. A., Dwek, R. A., Fleet, G. W. J. & Butters, T. D. Lysosomal storage of oligosaccharide and glycosphingolipid in imino sugar treated cells. Glycoconj. J. 27, 297–308 (2010).
Acknowledgements
We thank Dr J Ponder (Department of Biochemistry and Molecular Biophysics, Washington University) for providing us with the TINKER software. We also thank Ms Y Tanabe for typing the manuscript. This work was supported by Program for Research on Intractable Diseases of Health and Labor Research Grants (HS); the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (ID: 09-15, HS); the JAPS Asia/Africa Scientific Platform Program (HS); the Japan Society for the Promotion of Science (JAPS ID: 21390314, HS); and the High-Tech Research Center Project of the Ministry of Education, Culture, Sports, Science and Technology of Japan (S0801043, HS).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tajima, Y., Saito, S., Ohno, K. et al. Biochemical and structural study on a S529V mutant acid α-glucosidase responsive to pharmacological chaperones. J Hum Genet 56, 440–446 (2011). https://doi.org/10.1038/jhg.2011.36
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/jhg.2011.36
Keywords
This article is cited by
-
Cell fusion upregulates PD-L1 expression for evasion from immunosurveillance
Cancer Gene Therapy (2023)
-
Chaperone therapy for Krabbe disease: potential for late-onset GALC mutations
Journal of Human Genetics (2015)