Abstract
Since the introduction in the 1950s, warfarin has become the commonly used oral anticoagulant for the prevention of thromboembolism in patients with deep vein thrombosis, atrial fibrillation or prosthetic heart valve replacement. Warfarin is highly efficacious; however, achieving the desired anticoagulation is difficult because of its narrow therapeutic window and highly variable dose response among individuals. Bleeding is often associated with overdose of warfarin. There is overwhelming evidence that an individual’s warfarin maintenance is associated with clinical factors and genetic variations, most notably polymorphisms in cytochrome P450 2C9 and vitamin K epoxide reductase subunit 1. Numerous dose-prediction algorithms incorporating both genetic and clinical factors have been developed and tested clinically. However, results from major clinical trials are not available yet. This review aims to provide an overview of the field of warfarin which includes information about the drug, genetics of warfarin dose requirements, dosing algorithms developed and the challenges for the clinical implementation of warfarin pharmacogenetics.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Hirsh, J. Antithrombotic therapy in deep vein thrombosis and pulmonary embolism. Am. Heart J. 123, 1115–1122 (1992).
Hirsh, J., Dalen, J., Anderson, D. R., Poller, L., Bussey, H., Ansell, J. et al. Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 119, 8S–21S (2001).
Laupacis, A., Albers, G., Dalen, J., Dunn, M., Feinberg, W. & Jacobson, A. Antithrombotic therapy in atrial fibrillation. Chest 108, 352S–359S (1995).
Stein, P. D., Alpert, J. S., Copeland, J., Dalen, J. E., Goldman, S. & Turpie, A. G. Antithrombotic therapy in patients with mechanical and biological prosthetic heart valves. Chest 108, 371S–379S (1995).
FDA Drug Safety Communication: Safety review of post-market reports of serious bleeding events with the anticoagulant Pradaxa (dabigatran etexilate mesylate). (e-pub ahead of print 7 December 2011; http://www.fda.gov/drugs/drugsafety/ucm282724.htm ).
Johnson, J. A., Gong, L., Whirl-Carrillo, M., Gage, B. F., Scott, S. A., Stein, C. M. et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin. Pharmacol. Ther. 90, 625–629 (2011).
Wittkowsky, A. K. Warfarin and other coumarin derivatives: pharmacokinetics, pharmacodynamics, and drug interactions. Semin. Vasc. Med. 3, 221–230 (2003).
Bell, R. G. & Matschiner, J. T. Warfarin and the inhibition of vitamin K activity by an oxide metabolite. Nature 237, 32–33 (1972).
Wallin, R. & Martin, L. F. Vitamin K-dependent carboxylation and vitamin K metabolism in liver. Effects of warfarin. J. Clin. Invest. 76, 1879–1884 (1985).
Loebstein, R., Yonath, H., Peleg, D., Almog, S., Rotenberg, M., Lubetsky, A. et al. Interindividual variability in sensitivity to warfarin--nature or nurture? Clin. Pharmacol. Ther. 70, 159–164 (2001).
Takahashi, H., Wilkinson, G. R., Caraco, Y., Muszkat, M., Kim, R. B., Kashima, T. et al. Population differences in S-warfarin metabolism between CYP2C9 genotype-matched Caucasian and Japanese patients. Clin. Pharmacol. Ther. 73, 253–263 (2003).
Klein, T. E., Altman, R. B., Eriksson, N., Gage, B. F., Kimmel, S. E., Lee, M. T. et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med. 360, 753–764 (2009).
van den Besselaar, A. M., Poller, L. & Tripodi, A. Definition of the International Normalized Ratio (INR) and its consequences for the calibration procedure of thromboplastin preparations: a rebuttal. J. Thromb. Haemost. 2, 1490–1491 reply 1492–1494 (2004).
Keeling, D., Baglin, T., Tait, C., Watson, H., Perry, D., Baglin, C. et al. Guidelines on oral anticoagulation with warfarin—fourth edition. Br. J. Haematol. 154, 311–324 (2011).
Bogousslavsky, J. & Regli, F. Anticoagulant-induced intracerebral bleeding in brain ischemia. Evaluation in 200 patients with TIAs, emboli from the heart, and progressing stroke. Acta Neurol. Scand. 71, 464–471 (1985).
Gullov, A. L., Koefoed, B. G. & Petersen, P. Bleeding complications to long-term oral anticoagulant therapy. J. Thromb. Thrombolysis 1, 17–25 (1994).
Landefeld, C. S. & Beyth, R. J. Anticoagulant-related bleeding: clinical epidemiology, prediction, and prevention. Am. J. Med. 95, 315–328 (1993).
Budnitz, D. S., Lovegrove, M. C., Shehab, N. & Richards, C. L. Emergency hospitalizations for adverse drug events in older Americans. N. Engl. J. Med. 365, 2002–2012 (2011).
Hirsh, J., Fuster, V., Ansell, J. & Halperin, J. L., American Heart Association/American College of Cardiology F American Heart Association/American College of Cardiology Foundation guide to warfarin therapy. J. Am. Coll. Cardiol. 41, 1633–1652 (2003).
Lin, L. J., Cheng, M. H., Lee, C. H., Wung, D. C., Cheng, C. L. & Kao Yang, Y. H. Compliance with antithrombotic prescribing guidelines for patients with atrial fibrillation--a nationwide descriptive study in Taiwan. Clin. Ther. 30, 1726–1736 (2008).
Rasmussen, M. A., Skov, J., Bladbjerg, E. M., Sidelmann, J. J., Vamosi, M. & Jespersen, J. Multivariate analysis of the relation between diet and warfarin dose. Eur. J. Clin. Pharmacol. 68, 321–328 (2012).
Important information to know when you are taking: warfarin (coumadin) and vitamin k. (e-pub ahead of print 5 September 2012; http://www.cc.nih.gov/ccc/patient_education/drug_nutrient/coumadin1.pdf ).
Weathermon, R. & Crabb, D. W. Alcohol and medication interactions. Alcohol Res. Health 23, 40–54 (1999).
Heimark, L. D., Wienkers, L., Kunze, K., Gibaldi, M., Eddy, A. C., Trager, W. F. et al. The mechanism of the interaction between amiodarone and warfarin in humans. Clin. Pharmacol. Ther. 51, 398–407 (1992).
Juurlink, D. N. Drug interactions with warfarin: what clinicians need to know. CMAJ 177, 369–371 (2007).
Suh, D. C., Nelson, W. W., Choi, J. C. & Choi, I. Risk of hemorrhage and treatment costs associated with warfarin drug interactions in patients with atrial fibrillation. Clin. Ther. 34, 1569–1582 (2012).
Thijssen, H. H., Soute, B. A., Vervoort, L. M. & Claessens, J. G. Paracetamol (acetaminophen) warfarin interaction: NAPQI, the toxic metabolite of paracetamol, is an inhibitor of enzymes in the vitamin K cycle. Thromb. Haemost. 92, 797–802 (2004).
Limdi, N. A., Limdi, M. A., Cavallari, L., Anderson, A. M., Crowley, M. R., Baird, M. F. et al. Warfarin dosing in patients with impaired kidney function. Am. J. Kidney Dis 56, 823–831 (2010).
Rettie, A. E., Korzekwa, K. R., Kunze, K. L., Lawrence, R. F., Eddy, A. C., Aoyama, T. et al. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem. Res. Toxicol. 5, 54–59 (1992).
Furuya, H., Fernandez-Salguero, P., Gregory, W., Taber, H., Steward, A., Gonzalez, F. J. et al. Genetic polymorphism of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy. Pharmacogenetics 5, 389–392 (1995).
Takahashi, H. & Echizen, H. Pharmacogenetics of CYP2C9 and interindividual variability in anticoagulant response to warfarin. Pharmacogenomics J. 3, 202–214 (2003).
Bhasker, C. R., Miners, J. O., Coulter, S. & Birkett, D. J. Allelic and functional variability of cytochrome P4502C9. Pharmacogenetics 7, 51–58 (1997).
Sullivan-Klose, T. H., Ghanayem, B. I., Bell, D. A., Zhang, Z. Y., Kaminsky, L. S., Shenfield, G. M. et al. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6, 341–349 (1996).
Aithal, G. P., Day, C. P., Kesteven, P. J. & Daly, A. K. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 353, 717–719 (1999).
Lindh, J. D., Holm, L., Andersson, M. L. & Rane, A. Influence of CYP2C9 genotype on warfarin dose requirements--a systematic review and meta-analysis. Eur. J. Clin. Pharmacol. 65, 365–375 (2009).
Scott, S. A., Jaremko, M., Lubitz, S. A., Kornreich, R., Halperin, J. L. & Desnick, R. J. CYP2C9*8 is prevalent among African-Americans: implications for pharmacogenetic dosing. Pharmacogenomics 10, 1243–1255 (2009).
Limdi, N., Goldstein, J., Blaisdell, J., Beasley, T., Rivers, C. & Acton, R. Influence of CYP2C9 Genotype on warfarin dose among African American and European Americans. Personalized Med. 4, 157–169 (2007).
Cavallari, L. H., Langaee, T. Y., Momary, K. M., Shapiro, N. L., Nutescu, E. A., Coty, W. A. et al. Genetic and clinical predictors of warfarin dose requirements in African Americans. Clin. Pharmacol. Ther. 87, 459–464 (2010).
Kaminsky, L. S. & Zhang, Z. Y. Human P450 metabolism of warfarin. Pharmacol. Ther. 73, 67–74 (1997).
Wadelius, M., Sorlin, K., Wallerman, O., Karlsson, J., Yue, Q. Y., Magnusson, P. K. et al. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharmacogenomics J. 4, 40–48 (2004).
Wadelius, M., Chen, L. Y., Downes, K., Ghori, J., Hunt, S., Eriksson, N. et al. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J. 5, 262–270 (2005).
Cha, P. C., Mushiroda, T., Takahashi, A., Saito, S., Shimomura, H., Suzuki, T. et al. High-resolution SNP and haplotype maps of the human gamma-glutamyl carboxylase gene (GGCX) and association study between polymorphisms in GGCX and the warfarin maintenance dose requirement of the Japanese population. J. Hum. Genet. 52, 856–864 (2007).
Lee, M. T., Chen, C. H., Chou, C. H., Lu, L. S., Chuang, H. P., Chen, Y. T. et al. Genetic determinants of warfarin dosing in the Han-Chinese population. Pharmacogenomics 10, 1905–1913 (2009).
Shikata, E., Ieiri, I., Ishiguro, S., Aono, H., Inoue, K., Koide, T. et al. Association of pharmacokinetic (CYP2C9) and pharmacodynamic (factors II, VII, IX, and X; proteins S and C; and gamma-glutamyl carboxylase) gene variants with warfarin sensitivity. Blood 103, 2630–2635 (2004).
Chen, L. Y., Eriksson, N., Gwilliam, R., Bentley, D., Deloukas, P. & Wadelius, M. Gamma-glutamyl carboxylase (GGCX) microsatellite and warfarin dosing. Blood 106, 3673–3674 (2005).
Cain, D., Hutson, S. M. & Wallin, R. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane. J. Biol. Chem. 272, 29068–29075 (1997).
Loebstein, R., Vecsler, M., Kurnik, D., Austerweil, N., Gak, E., Halkin, H. et al. Common genetic variants of microsomal epoxide hydrolase affect warfarin dose requirements beyond the effect of cytochrome P450 2C9. Clin. Pharmacol. Ther. 77, 365–372 (2005).
Wajih, N., Sane, D. C., Hutson, S. M. & Wallin, R. The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats. J. Biol. Chem. 279, 25276–25283 (2004).
Kimura, R., Miyashita, K., Kokubo, Y., Akaiwa, Y., Otsubo, R., Nagatsuka, K. et al. Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients. Thromb. Res. 120, 181–186 (2007).
Lin, P. J., Jin, D. Y., Tie, J. K., Presnell, S. R., Straight, D. L. & Stafford, D. W. The putative vitamin K-dependent gamma-glutamyl carboxylase internal propeptide appears to be the propeptide binding site. J. Biol. Chem. 277, 28584–28591 (2002).
Presnell, S. R., Tripathy, A., Lentz, B. R., Jin, D. Y. & Stafford, D. W. A novel fluorescence assay to study propeptide interaction with gamma-glutamyl carboxylase. Biochemistry 40, 11723–11733 (2001).
Rieder, M. J., Reiner, A. P. & Rettie, A. E. Gamma-glutamyl carboxylase (GGCX) tagSNPs have limited utility for predicting warfarin maintenance dose. J. Thromb. Haemost. 5, 2227–2234 (2007).
Saupe, J., Shearer, M. J. & Kohlmeier, M. Phylloquinone transport and its influence on gamma-carboxyglutamate residues of osteocalcin in patients on maintenance hemodialysis. Am. J. Clin. Nutr. 58, 204–208 (1993).
Berkner, K. L. & Runge, K. W. The physiology of vitamin K nutriture and vitamin K-dependent protein function in atherosclerosis. J. Thromb. Haemost. 2, 2118–2132 (2004).
Lal, S., Sandanaraj, E., Jada, S. R., Kong, M. C., Lee, L. H., Goh, B. C. et al. Influence of APOE genotypes and VKORC1 haplotypes on warfarin dose requirements in Asian patients. Br. J. Clin. Pharmacol. 65, 260–264 (2008).
Otagiri, M., Maruyama, T., Imai, T., Suenaga, A. & Imamura, Y. A comparative study of the interaction of warfarin with human alpha 1-acid glycoprotein and human albumin. J. Pharm. Pharmacol. 39, 416–420 (1987).
Li, T., Chang, C. Y., Jin, D. Y., Lin, P. J., Khvorova, A. & Stafford, D. W. Identification of the gene for vitamin K epoxide reductase. Nature 427, 541–544 (2004).
Rost, S., Fregin, A., Ivaskevicius, V., Conzelmann, E., Hortnagel, K., Pelz, H. J. et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427, 537–541 (2004).
Rieder, M. J., Reiner, A. P., Gage, B. F., Nickerson, D. A., Eby, C. S., McLeod, H. L. et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N. Engl. J. Med. 352, 2285–2293 (2005).
Yuan, H. Y., Chen, J. J., Lee, M. T., Wung, J. C., Chen, Y. F., Charng, M. J. et al. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum. Mol. Genet. 14, 1745–1751 (2005).
Limdi, N. A., Wadelius, M., Cavallari, L., Eriksson, N., Crawford, D. C., Lee, M. T. et al. Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood 115, 3827–3834 (2010).
Perini, J. A., Struchiner, C. J., Silva-Assuncao, E., Santana, I. S., Rangel, F., Ojopi, E. B. et al. Pharmacogenetics of warfarin: development of a dosing algorithm for brazilian patients. Clin. Pharmacol. Ther. 84, 722–728 (2008).
Djaffar-Jureidini, I., Chamseddine, N., Keleshian, S., Naoufal, R., Zahed, L. & Hakime, N. Pharmacogenetics of coumarin dosing: prevalence of CYP2C9 and VKORC1 polymorphisms in the Lebanese population. Genet. Test. Mol Biomarkers 15, 827–830 (2011).
Pathare, A., Al Khabori, M., Alkindi, S., Al Zadjali, S., Misquith, R., Khan, H. et al. Warfarin pharmacogenetics: development of a dosing algorithm for Omani patients. J. Hum. Genet. 57, 665–669 (2012).
Suriapranata, I. M., Tjong, W. Y., Wang, T., Utama, A., Raharjo, S. B., Yuniadi, Y. et al. Genetic factors associated with patient-specific warfarin dose in ethnic Indonesians. BMC Med. Genet. 12, 80 (2011).
Scott, S. A., Edelmann, L., Kornreich, R. & Desnick, R. J. Warfarin pharmacogenetics: CYP2C9 and VKORC1 genotypes predict different sensitivity and resistance frequencies in the Ashkenazi and Sephardi Jewish populations. Am. J. Hum. Genet. 82, 495–500 (2008).
Cooper, G. M., Johnson, J. A., Langaee, T. Y., Feng, H., Stanaway, I. B., Schwarz, U. I. et al. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood 112, 1022–1027 (2008).
Takeuchi, F., McGinnis, R., Bourgeois, S., Barnes, C., Eriksson, N., Soranzo, N. et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet. 5, e1000433 (2009).
Cha, P. C., Mushiroda, T., Takahashi, A., Kubo, M., Minami, S., Kamatani, N. et al. Genome-wide association study identifies genetic determinants of warfarin responsiveness for Japanese. Hum. Mol. Genet. 19, 4735–4744 (2010).
Caldwell, M. D., Awad, T., Johnson, J. A., Gage, B. F., Falkowski, M., Gardina, P. et al. CYP4F2 genetic variant alters required warfarin dose. Blood 111, 4106–4112 (2008).
McDonald, M. G., Rieder, M. J., Nakano, M., Hsia, C. K. & Rettie, A. E. CYP4F2 is a vitamin K1 oxidase: An explanation for altered warfarin dose in carriers of the V433M variant. Mol. Pharmacol. 75, 1337–1346 (2009).
Danese, E., Montagnana, M., Johnson, J. A., Rettie, A. E., Zambon, C. F., Lubitz, S. A. et al. Impact of the CYP4F2 p.V433M polymorphism on coumarin dose requirement: systematic review and meta-analysis. Clin. Pharmacol. Ther. 92, 746–756 (2012).
Poller, L., Wright, D. & Rowlands, M. Prospective comparative study of computer programs used for management of warfarin. J. Clin. Pathol. 46, 299–303 (1993).
Vadher, B. D., Patterson, D. L. & Leaning, M. S. Validation of an algorithm for oral anticoagulant dosing and appointment scheduling. Clin. Lab. Haematol. 17, 339–345 (1995).
Ageno, W., Johnson, J., Nowacki, B. & Turpie, A. G. A computer generated induction system for hospitalized patients starting on oral anticoagulant therapy. Thromb. Haemost. 83, 849–852 (2000).
Gage, B. F., Eby, C., Milligan, P. E., Banet, G. A., Duncan, J. R. & McLeod, H. L. Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. Thromb. Haemost. 91, 87–94 (2004).
Kamali, F., Khan, T. I., King, B. P., Frearson, R., Kesteven, P., Wood, P. et al. Contribution of age, body size, and CYP2C9 genotype to anticoagulant response to warfarin. Clin. Pharmacol. Ther. 75, 204–212 (2004).
Wei, M., Ye, F., Xie, D., Zhu, Y., Zhu, J., Tao, Y. et al. A new algorithm to predict warfarin dose from polymorphisms of CYP4F2, CYP2C9 and VKORC1 and clinical variables: derivation in Han Chinese patients with non valvular atrial fibrillation. Thromb. Haemost. 107, 1083–1091 (2012).
Carcas, A. J., Borobia, A. M., Velasco, M., Abad-Santos, F., Diaz, M. Q., Fernandez-Capitan, C. et al. Efficiency and effectiveness of the use of an acenocoumarol pharmacogenetic dosing algorithm versus usual care in patients with venous thromboembolic disease initiating oral anticoagulation: study protocol for a randomized controlled trial. Trials 13, 239 (2012).
Lubitz, S. A., Scott, S. A., Rothlauf, E. B., Agarwal, A., Peter, I., Doheny, D. et al. Comparative performance of gene-based warfarin dosing algorithms in a multiethnic population. J. Thromb. Haemost. 8, 1018–1026 (2010).
Wen, M. S., Lee, M., Chen, J. J., Chuang, H. P., Lu, L. S., Chen, C. H. et al. Prospective study of warfarin dosage requirements based on CYP2C9 and VKORC1 genotypes. Clin. Pharmacol. Ther. 84, 83–89 (2008).
Choi, J. R., Kim, J. O., Kang, D. R., Yoon, S. A., Shin, J. Y., Zhang, X. et al. Proposal of pharmacogenetics-based warfarin dosing algorithm in Korean patients. J. Hum. Genet. 56, 290–295 (2011).
Biss, T. T., Avery, P. J., Brandao, L. R., Chalmers, E. A., Williams, M. D., Grainger, J. D. et al. VKORC1 and CYP2C9 genotype and patient characteristics explain a large proportion of the variability in warfarin dose requirement among children. Blood 119, 868–873 (2012).
Moreau, C., Bajolle, F., Siguret, V., Lasne, D., Golmard, J. L., Elie, C. et al. Vitamin K antagonists in children with heart disease: height and VKORC1 genotype are the main determinants of the warfarin dose requirement. Blood 119, 861–867 (2012).
Millican, E., Jacobsen-Lenzini, P. A., Milligan, P. E., Grosso, L., Eby, C., Deych, E. et al. Genetic-based dosing in orthopaedic patients beginning warfarin therapy. Blood 110, 1511–1515 (2007).
Finkelman, B. S., Gage, B. F., Johnson, J. A., Brensinger, C. M. & Kimmel, S. E. Genetic warfarin dosing: tables versus algorithms. J. Am. Coll. Cardiol. 57, 612–618 (2011).
Anderson, J. L., Horne, B. D., Stevens, S. M., Grove, A. S., Barton, S., Nicholas, Z. P. et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation 116, 2563–2570 (2007).
Burmester, J. K., Berg, R. L., Yale, S. H., Rottscheit, C. M., Glurich, I. E., Schmelzer, J. R. et al. A randomized controlled trial of genotype-based coumadin initiation. Genet. Med. 13, 509–518 (2011).
Caraco, Y., Blotnick, S. & Muszkat, M. CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study. Clin. Pharmacol. Ther. 83, 460–470 (2008).
Epstein, R. S., Moyer, T. P., Aubert, R. E., O Kane, D. J., Xia, F., Verbrugge, R. R. et al. Warfarin genotyping reduces hospitalization rates results from the MM-WES (Medco-Mayo Warfarin Effectiveness study). J. Am. Coll. Cardiol. 55, 2804–2812 (2010).
Gong, I. Y., Tirona, R. G., Schwarz, U. I., Crown, N., Dresser, G. K., Larue, S. et al. Prospective evaluation of a pharmacogenetics-guided warfarin loading and maintenance dose regimen for initiation of therapy. Blood 118, 3163–3171 (2011).
McMillin, G. A., Melis, R., Wilson, A., Strong, M. B., Wanner, N. A., Vinik, R. G. et al. Gene-based warfarin dosing compared with standard of care practices in an orthopedic surgery population: a prospective, parallel cohort study. Ther. Drug. Monit. 32, 338–345 (2010).
Carlquist, J. F., Horne, B. D., Muhlestein, J. B., Lappe, D. L., Whiting, B. M., Kolek, M. J. et al. Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study. J. Thromb. Thrombolysis 22, 191–197 (2006).
Lenzini, P. A., Grice, G. R., Milligan, P. E., Dowd, M. B., Subherwal, S., Deych, E. et al. Laboratory and clinical outcomes of pharmacogenetic vs. clinical protocols for warfarin initiation in orthopedic patients. J. Thromb. Haemost. 6, 1655–1662 (2008).
Voora, D., Eby, C., Linder, M. W., Milligan, P. E., Bukaveckas, B. L., McLeod, H. L. et al. Prospective dosing of warfarin based on cytochrome P-450 2C9 genotype. Thromb. Haemost. 93, 700–705 (2005).
Anderson, J. L., Horne, B. D., Stevens, S. M., Woller, S. C., Samuelson, K. M., Mansfield, J. W. et al. A randomized and clinical effectiveness trial comparing two pharmacogenetic algorithms and standard care for individualizing warfarin dosing (CoumaGen-II). Circulation 125, 1997–2005 (2012).
Connolly, S. J., Ezekowitz, M. D., Yusuf, S., Eikelboom, J., Oldgren, J., Parekh, A. et al. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 361, 1139–1151 (2009).
Patel, M. R., Mahaffey, K. W., Garg, J., Pan, G., Singer, D. E., Hacke, W. et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 365, 883–891 (2011).
Shah, S. V. & Gage, B. F. Cost-effectiveness of dabigatran for stroke prophylaxis in atrial fibrillation. Circulation 123, 2562–2570 (2011).
Acknowledgements
Supported by grants from the NIH/NIGMS R24 GM61374 (TEK).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lee, M., Klein, T. Pharmacogenetics of warfarin: challenges and opportunities. J Hum Genet 58, 334–338 (2013). https://doi.org/10.1038/jhg.2013.40
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/jhg.2013.40
Keywords
This article is cited by
-
Cluster-based psychological phenotyping and differences in anxiety treatment outcomes
Scientific Reports (2023)
-
Evaluation of supervised machine learning algorithms in predicting the poor anticoagulation control and stable weekly doses of warfarin
International Journal of Clinical Pharmacy (2023)
-
Genetic Factors Influencing Warfarin Dose in Han Chinese Population: A Systematic Review and Meta-Analysis of Cohort Studies
Clinical Pharmacokinetics (2023)
-
Optimisation of warfarin-dosing algorithms for Han Chinese patients with CYP2C9*13 variants
European Journal of Clinical Pharmacology (2023)
-
Impact of anticoagulants on the clinical outcomes of colonic diverticular bleeding comparing warfarin and direct oral anticoagulants
Scientific Reports (2022)