Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Clinical relevance of visit-to-visit blood pressure variability: impact on renal outcomes

Abstract

An impaired renal function has been found associated with very high cardiovascular (CV) risk, especially in subjects with type 2 diabetes. Microalbuminuria is a sensitive early marker of renal damage, often preceding the more advanced stages of diabetic nephropathy. Consistent evidence has been provided that any degree of quantifiable albuminuria, even in the range of normoalbuminuria, is a significant predictor of CV events and progression to end-stage renal disease. This is of particular relevance in subjects with type 2 diabetes in whom the prevalence of microalbuminuria may be as high as 50%. This has motivated the search for novel, yet modifiable risk factors the correction of which may contribute to prevention of albuminuria development and of renal impairment progression in patients with type 2 diabetes, aimed at further reducing the overall CV risk profile in these patients. One of these proposed novel risk factors is an increase in blood pressure variability (BPV). This suggestion is supported by a series of studies, carried out either in diabetic and in nondiabetic populations, which have provided evidence that an increased BPV, in addition to increased average BP levels, may be an independent predictor not only of CV events and mortality but also of development and progression of renal disease. The purpose of the present paper is to provide a critical review of the evidence exploring the relationship between BPV and renal dysfunction with particular emphasis on the relationship between visit-to-visit BPV and urinary albumin excretion variability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Parati G, Ochoa JE, Lombardi C, Bilo G . Assessment and management of blood-pressure variability. Nat Rev Cardiol 2013; 10: 143–155.

    Article  Google Scholar 

  2. Mancia G, Facchetti R, Parati G, Zanchetti A . Visit-to-visit blood pressure variability in the European Lacidipine Study on Atherosclerosis: methodological aspects and effects of antihypertensive treatment. J Hypertens 2012; 30: 1241–1251.

    Article  CAS  Google Scholar 

  3. Murakami S, Otsuka K, Kubo Y, Shinagawa M, Matsuoka O, Yamanaka T et al. Weekly variation of home and ambulatory blood pressure and relation between arterial stiffness and blood pressure measurements in community-dwelling hypertensives. Clin Exp Hypertens 2005; 27: 231–239.

    Article  Google Scholar 

  4. Sega R, Cesana G, Bombelli M, Grassi G, Stella ML, Zanchetti A et al. Seasonal variations in home and ambulatory blood pressure in the PAMELA population. Pressione Arteriose Monitorate E Loro Associazioni. J Hypertens 1998; 16: 1585–1592.

    Article  CAS  Google Scholar 

  5. Modesti PA, Morabito M, Bertolozzi I, Massetti L, Panci G, Lumachi C et al. Weather-related changes in 24-hour blood pressure profile: effects of age and implications for hypertension management. Hypertension 2006; 47: 155–161.

    Article  CAS  Google Scholar 

  6. Parati G, Pomidossi G, Albini F, Malaspina D, Mancia G . Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension. J Hypertens 1987; 5: 93–98.

    Article  CAS  Google Scholar 

  7. Frattola A, Parati G, Cuspidi C, Albini F, Mancia G . Prognostic value of 24-hour blood pressure variability. J Hypertens 1993; 11: 1133–1137.

    Article  CAS  Google Scholar 

  8. Stolarz-Skrzypek K, Thijs L, Richart T, Li Y, Hansen TW, Boggia J et al. Blood pressure variability in relation to outcome in the international database of ambulatory blood pressure in relation to cardiovascular outcome. Hypertens Res 2010; 33: 757–766.

    Article  Google Scholar 

  9. Hansen TW, Thijs L, Li Y, Boggia J, Kikuya M, Bjorklund-Bodegard K et al. Prognostic value of reading-to-reading blood pressure variability over 24 h in 8938 subjects from 11 populations. Hypertension 2010; 55: 1049–1057.

    Article  CAS  Google Scholar 

  10. Kikuya M, Ohkubo T, Metoki H, Asayama K, Hara A, Obara T et al. Day-by-day variability of blood pressure and heart rate at home as a novel predictor of prognosis: the Ohasama study. Hypertension 2008; 52: 1045–1050.

    Article  CAS  Google Scholar 

  11. Rothwell PM, Howard SC, Dolan E, O'Brien E, Dobson JE, Dahlof B et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet 2010; 375: 895–905.

    Article  Google Scholar 

  12. Muntner P, Shimbo D, Tonelli M, Reynolds K, Arnett DK, Oparil S . The relationship between visit-to-visit variability in systolic blood pressure and all-cause mortality in the general population: findings from NHANES III, 1988 to 1994. Hypertension 2011; 57: 160–166.

    Article  CAS  Google Scholar 

  13. Metoki H, Ohkubo T, Kikuya M, Asayama K, Obara T, Hashimoto J et al. Prognostic significance for stroke of a morning pressor surge and a nocturnal blood pressure decline: the Ohasama study. Hypertension 2006; 47: 149–154.

    Article  CAS  Google Scholar 

  14. Hansen TW, Li Y, Boggia J, Thijs L, Richart T, Staessen JA . Predictive role of the nighttime blood pressure. Hypertension 2011; 57: 3–10.

    Article  CAS  Google Scholar 

  15. Lurbe E, Redon J, Kesani A, Pascual JM, Tacons J, Alvarez V et al. Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med 2002; 347: 797–805.

    Article  CAS  Google Scholar 

  16. Davidson MB, Hix JK, Vidt DG, Brotman DJ . Association of impaired diurnal blood pressure variation with a subsequent decline in glomerular filtration rate. Arch Int Med 2006; 166: 846–852.

    Article  Google Scholar 

  17. Knudsen ST, Laugesen E, Hansen KW, Bek T, Mogensen CE, Poulsen PL . Ambulatory pulse pressure, decreased nocturnal blood pressure reduction and progression of nephropathy in type 2 diabetic patients. Diabetologia 2009; 52: 698–704.

    Article  CAS  Google Scholar 

  18. Masugata H, Senda S, Murao K, Inukai M, Hosomi N, Iwado Y et al. Visit-to-visit variability in blood pressure over a 1-year period is a marker of left ventricular diastolic dysfunction in treated hypertensive patients. Hypertens Res 2011; 34: 846–850.

    Article  Google Scholar 

  19. Nagai M, Hoshide S, Ishikawa J, Shimada K, Kario K . Visit-to-visit blood pressure variations: new independent determinants for carotid artery measures in the elderly at high risk of cardiovascular disease. J Am Soc Hypertens 2011; 5: 184–192.

    Article  Google Scholar 

  20. Kilpatrick ES, Rigby AS, Atkin SL . The role of blood pressure variability in the development of nephropathy in type 1 diabetes. Diab Care 2010; 33: 2442–2447.

    Article  Google Scholar 

  21. Kawai T, Ohishi M, Kamide K, Onishi M, Takeya Y, Tatara Y et al. The impact of visit-to-visit variability in blood pressure on renal function. Hypertens Res 2012; 35: 239–243.

    Article  Google Scholar 

  22. Yokota K, Fukuda M, Matsui Y, Hoshide S, Shimada K, Kario K . Impact of visit-to-visit variability of blood pressure on deterioration of renal function in patients with non-diabetic chronic kidney disease. Hypertens Res 2013; 36: 151–157.

    Article  CAS  Google Scholar 

  23. Hata Y, Kimura Y, Muratani H, Fukiyama K, Kawano Y, Ashida T et al. Office blood pressure variability as a predictor of brain infarction in elderly hypertensive patients. Hypertens Res 2000; 23: 553–560.

    Article  CAS  Google Scholar 

  24. Hata Y, Muratani H, Kimura Y, Fukiyama K, Kawano Y, Ashida T et al. Office blood pressure variability as a predictor of acute myocardial infarction in elderly patients receiving antihypertensive therapy. J Hum Hypertens 2002; 16: 141–146.

    Article  CAS  Google Scholar 

  25. Eguchi K, Hoshide S, Schwartz JE, Shimada K, Kario K . Visit-to-visit and ambulatory blood pressure variability as predictors of incident cardiovascular events in patients with hypertension. Am J Hypertens 2012; 25: 962–968.

    Article  Google Scholar 

  26. Mancia G, Facchetti R, Parati G, Zanchetti A . Visit-to-visit blood pressure variability, carotid atherosclerosis, and cardiovascular events in the European Lacidipine Study on Atherosclerosis. Circulation 2012; 126: 569–578.

    Article  Google Scholar 

  27. Schutte R, Thijs L, Liu YP, Asayama K, Jin Y, Odili A et al. Within-subject blood pressure level—not variability—predicts fatal and nonfatal outcomes in a general population. Hypertension 2012; 60: 1138–1147.

    Article  CAS  Google Scholar 

  28. Okada H, Fukui M, Tanaka M, Inada S, Mineoka Y, Nakanishi N et al. Visit-to-visit variability in systolic blood pressure is correlated with diabetic nephropathy and atherosclerosis in patients with type 2 diabetes. Atherosclerosis 2012; 220: 155–159.

    Article  CAS  Google Scholar 

  29. Okada H, Fukui M, Tanaka M, Matsumoto S, Mineoka Y, Nakanishi N et al. Visit-to-visit blood pressure variability is a novel risk factor for the development and progression of diabetic nephropathy in patients with type 2 diabetes. Diab Care 2013; 36: 1908–1912.

    Article  CAS  Google Scholar 

  30. Noshad S, Mousavizadeh M, Mozafari M, Nakhjavani M, Esteghamati A . Visit-to-visit blood pressure variability is related to albuminuria variability and progression in patients with type 2 diabetes. J Hum Hypertens 2014; 28: 37–43.

    Article  CAS  Google Scholar 

  31. Mancia G, Ferrari A, Gregorini L, Parati G, Pomidossi G, Bertinieri G et al. Blood pressure and heart rate variabilities in normotensive and hypertensive human beings. Circ Res 1983; 53: 96–104.

    Article  CAS  Google Scholar 

  32. Tsioufis C, Tzioumis C, Marinakis N, Toutouzas K, Tousoulis D, Kallikazaros I et al. Microalbuminuria is closely related to impaired arterial elasticity in untreated patients with essential hypertension. Nephron Clin Pract 2003; 93: c106–c111.

    Article  CAS  Google Scholar 

  33. Tsioufis C, Stefanadis C, Toutouza M, Kallikazaros I, Toutouzas K, Tousoulis D et al. Microalbuminuria is associated with unfavourable cardiac geometric adaptations in essential hypertensive subjects. J Hum Hypertens 2002; 16: 249–254.

    Article  CAS  Google Scholar 

  34. Shantsila A, Dwivedi G, Shantsila E, Butt M, Beevers DG, Lip GY . Persistent macrovascular and microvascular dysfunction in patients with malignant hypertension. Hypertension 2011; 57: 490–496.

    Article  CAS  Google Scholar 

  35. Mogensen CE, Vestbo E, Poulsen PL, Christiansen C, Damsgaard EM, Eiskjaer H et al. Microalbuminuria and potential confounders. A review and some observations on variability of urinary albumin excretion. Diab Care 1995; 18: 572–581.

    Article  CAS  Google Scholar 

  36. Gomes MB, Goncalves MF . Is there a physiological variability for albumin excretion rate? Study in patients with diabetes type 1 and non-diabetic individuals. Clin Chim Acta 2001; 304: 117–123.

    Article  CAS  Google Scholar 

  37. Tsioufis C, Antoniadis D, Stefanadis C, Tzioumis K, Pitsavos C, Kallikazaros I et al. Relationships between new risk factors and circadian blood pressure variation in untreated subjects with essential hypertension. Am J Hypertens 2002; 15 (7 Pt 1): 600–604.

    Article  CAS  Google Scholar 

  38. Afghahi H, Cederholm J, Eliasson B, Zethelius B, Gudbjornsdottir S, Hadimeri H et al. Risk factors for the development of albuminuria and renal impairment in type 2 diabetes—the Swedish National Diabetes Register (NDR). Nephrol Dial Transplant 2011; 26: 1236–1243.

    Article  Google Scholar 

  39. Araki S, Haneda M, Sugimoto T, Isono M, Isshiki K, Kashiwagi A et al. Factors associated with frequent remission of microalbuminuria in patients with type 2 diabetes. Diabetes 2005; 54: 2983–2987.

    Article  CAS  Google Scholar 

  40. Mancia G, Bertinieri G, Grassi G, Parati G, Pomidossi G, Ferrari A et al. Effects of blood-pressure measurement by the doctor on patient's blood pressure and heart rate. Lancet 1983; 2: 695–698.

    Article  CAS  Google Scholar 

  41. Mancia G, Di Rienzo M, Parati G . Ambulatory blood pressure monitoring use in hypertension research and clinical practice. Hypertension 1993; 21: 510–524.

    Article  CAS  Google Scholar 

  42. Parati G, Stergiou GS, Asmar R, Bilo G, de Leeuw P, Imai Y et al. European Society of Hypertension guidelines for blood pressure monitoring at home a summary report of the Second International Consensus Conference on Home Blood Pressure Monitoring. J Hypertens 2008; 26: 1505–1526.

    Article  CAS  Google Scholar 

  43. Parati G, Pomidossi G, Casadei R, Mancia G . Lack of alerting reactions to intermittent cuff inflations during noninvasive blood pressure monitoring. Hypertension 1985; 7: 597–601.

    Article  CAS  Google Scholar 

  44. Stergiou GS, Nasothimiou EG . Home monitoring is the optimal method for assessing blood pressure variability. Hypertens Res 2011; 34: 1246–1248.

    Article  Google Scholar 

  45. Ritz E, Orth SR . Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med 1999; 341: 1127–1133.

    Article  CAS  Google Scholar 

  46. Segura J, Ruilope LM, Zanchetti A . On the importance of estimating renal function for cardiovascular risk assessment. J Hypertens 2004; 22: 1635–1639.

    Article  CAS  Google Scholar 

  47. Chavers BM, Bilous RW, Ellis EN, Steffes MW, Mauer SM . Glomerular lesions and urinary albumin excretion in type I diabetes without overt proteinuria. N Engl J Med 1989; 320: 966–970.

    Article  CAS  Google Scholar 

  48. Lambers Heerspink HJ, de Zeeuw D . Debate: PRO position. Should microalbuminuria ever be considered as a renal endpoint in any clinical trial? Am J Nephrol 2010; 31: 458–461 discussion 68.

    Article  Google Scholar 

  49. Ruggenenti P, Porrini E, Motterlini N, Perna A, Ilieva AP, Iliev IP et al. Measurable urinary albumin predicts cardiovascular risk among normoalbuminuric patients with type 2 diabetes. J Am Soc Nephrol 2012; 23: 1717–1724.

    Article  CAS  Google Scholar 

  50. Hallan SI, Ritz E, Lydersen S, Romundstad S, Kvenild K, Orth SR . Combining GFR and albuminuria to classify CKD improves prediction of ESRD. J Am Soc Nephrol 2009; 20: 1069–1077.

    Article  CAS  Google Scholar 

  51. Perkins RM, Tang X, Bengier AC, Kirchner HL, Bucaloiu ID . Variability in estimated glomerular filtration rate is an independent risk factor for death among patients with stage 3 chronic kidney disease. Kidney Int 2012; 82: 1332–1338.

    Article  CAS  Google Scholar 

  52. Collins R, Peto R, MacMahon S, Hebert P, Fiebach NH, Eberlein KA et al. Blood pressure, stroke, and coronary heart disease. Part 2, Short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context. Lancet 1990; 335: 827–838.

    Article  CAS  Google Scholar 

  53. Turnbull F . Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet 2003; 362: 1527–1535.

    Article  CAS  Google Scholar 

  54. Rothwell PM, Howard SC, Dolan E, O'Brien E, Dobson JE, Dahlof B et al. Effects of beta blockers and calcium-channel blockers on within-individual variability in blood pressure and risk of stroke. Lancet Neurol 2010; 9: 469–480.

    Article  CAS  Google Scholar 

  55. Zhang Y, Agnoletti D, Safar ME, Blacher J . Effect of antihypertensive agents on blood pressure variability: the Natrilix SR versus candesartan and amlodipine in the reduction of systolic blood pressure in hypertensive patients (X-CELLENT) study. Hypertension 2011; 58: 155–160.

    Article  CAS  Google Scholar 

  56. Webb AJ, Rothwell PM . Effect of dose and combination of antihypertensives on interindividual blood pressure variability: a systematic review. Stroke 2011; 42: 2860–2865.

    Article  CAS  Google Scholar 

  57. Webb AJ, Fischer U, Mehta Z, Rothwell PM . Effects of antihypertensive-drug class on interindividual variation in blood pressure and risk of stroke: a systematic review and meta-analysis. Lancet 2010; 375: 906–915.

    Article  CAS  Google Scholar 

  58. Zanchetti A . Wars, war games, and dead bodies on the battlefield: variations on the theme of blood pressure variability. Stroke 2011; 42: 2722–2724.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Parati.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parati, G., Liu, X. & Ochoa, J. Clinical relevance of visit-to-visit blood pressure variability: impact on renal outcomes. J Hum Hypertens 28, 403–409 (2014). https://doi.org/10.1038/jhh.2013.96

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/jhh.2013.96

Keywords

This article is cited by

Search

Quick links