Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technique
  • Published:

Ventral Approach to the Lumbar Spine of the Sprague-Dawley Rat

Abstract

Lumbar intervertebral disc repair is an important tissue-engineering research area. In creating an in vivo rat model to evaluate repair techniques, the authors developed a surgical transperitoneal approach that permits the easy exposure of four lumbar vertebral bodies with no surgery-related peri- or postoperative complications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Figure 1: The intestines are not fixed to the dorsal abdominal wall and can be reclined to the left side of the cavity.
Figure 2: Opening of the retroperitoneal space along the right side of the posterior vena cava.
Figure 3

References

  1. Boos, N., Weissbach, S., Rohrbach, H., Weiler, C., Spratt, K.F. & Nerlich, A.G. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine 27(23), 2631–2644 (2002).

    Article  Google Scholar 

  2. Lipson, S.J. & Muir, H. 1980 Volvo Award in basic science. Proteoglycans in experimental intervertebral disc degeneration. Spine 6(3), 194–210 (1981).

    Article  Google Scholar 

  3. Hampton, D., Laros, G., McCarron, R. & Franks, D. Healing potential of the anulus fibrosus. Spine 14(4), 398–401 (1989).

    Article  Google Scholar 

  4. Osti, O.L., Vernon-Roberts, B. & Fraser, R.D. 1990 Volvo Award in experimental studies. Anulus tears and intervertebral disc degeneration. An experimental study using an animal model. Spine 15(8), 762–767 (1990).

    Google Scholar 

  5. Ethier, D.B. et al. The influence of anulotomy selection on disc competence. A radiographic, biomechanical, and histologic analysis. Spine 19(18), 2071–2076 (1994).

    Article  Google Scholar 

  6. Kaapa, E., Holm, S., Han, X., Takala, T., Kovanen, V. & Vanharanta, H. Collagens in the injured porcine intervertebral disc. J. Orthop. Res. 12(1), 93–102 (1994).

    Article  Google Scholar 

  7. Nishida, K., Kang, J.D., Suh, J.K., Robbins, P.D., Evans, C.H. & Gilbertson, L.G. Adenovirus-mediated gene transfer to nucleus pulposus cells. Implications for the treatment of intervertebral disc degeneration. Spine 23(22), 2437–2442 (1998).

    Article  Google Scholar 

  8. Walsh, A.J., Bradford, D.S. & Lotz, J.C. In vivo growth factor treatment of degenerated intervertebral discs. Spine 29(2), 156–163 (2003).

    Google Scholar 

  9. Okuma, M., Mochida, J., Nishimura, K., Sakabe, K. & Seiki, K. Reinsertion of stimulated nucleus pulposus cells retards intervertebral disc degeneration: an in vitro and in vivo experimental study. J. Orthop. Res. 18(6), 988–997 (2000).

    Article  Google Scholar 

  10. Gruber, H. et al. Autologous intervertebral disc cell implantation. A model using Psammomys obesus, the sand rat. Spine 27(15), 1626–1633 (2002).

    Article  Google Scholar 

  11. Court, C., Colliou, O.K., Chin, J.R., Liebenberg, E., Bradford, D.S. & Lotz, J.C. The effect of static in vivo bending on the murine intervertebral disc. Spine J. 1(4), 239–245 (2001).

    Article  Google Scholar 

  12. Norcross, J.P., Lester, G.E., Weinhold, P. & Dahners, L.E. An in vivo model of degenerative disc disease. J. Orthop. Res. 21(1), 183–188 (2003).

    Article  Google Scholar 

  13. Hsieh, A.H. & Lotz, J.C. Prolonged spinal loading induces matrix metalloproteinase-2 activation in intervertebral discs. Spine 28(16), 1781–1788 (2003).

    Article  Google Scholar 

  14. Palmer, E.I. & Lotz, J.C. The compressive creep properties of normal and degenerated murine intervertebral disc. J. Orthop. Res. 22(1), 164–169 (2004).

    Article  Google Scholar 

  15. Nagano, T., Yonenobu, K., Miyamoto, S., Tohyama, M. & Ono, K. Distribution of the basic fibroblast growth factor and its receptor gene expression in normal and degenerated rat intervertebral disc. Spine 20(18), 1972–1978 (1995).

    Article  Google Scholar 

  16. Gruber, H.E., Johnson, T., Norton, H.J. & Hanley, E.N. Jr. The sand rat model for disc degeneration: radiologic characterization of age-related changes: cross-sectional and prospective analyses. Spine 27(3), 230–234 (2002).

    Article  Google Scholar 

  17. Greene, E.C. Anatomy of the Rat (American Philosophical Society, Philadelphia, PA, 1935).

    Book  Google Scholar 

  18. Jollie, M. Chordate Morphology (Reinhold Book Corp., New York, 1962).

    Book  Google Scholar 

  19. Williams, P.L., Warwich, R., Dyson, M. & Bannister, L.H. Gray's Anatomy 37th Edn. 1341 (Churchill Livingstone, New York, 1989).

    Google Scholar 

  20. Mayer, H.M. The ALIF concept. Eur. Spine J. 9(Suppl 1), S35–S43 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. Lotz PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rousseau, MA., Bass, E. & Lotz, J. Ventral Approach to the Lumbar Spine of the Sprague-Dawley Rat. Lab Anim 33, 43–45 (2004). https://doi.org/10.1038/laban0604-43

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/laban0604-43

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing