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REVIEW

Vitamin D signaling and melanoma: role of vitamin D
and its receptors in melanoma progression and
management

Andrzej T Slominski'*?, Anna A Brozyna®®, Michal A Zmijewski®, Wojciech Jozwicki*>, Anton M Jetten’,
Rebecca S Mason®, Robert C Tuckey® and Craig A Elmets'~

Ultraviolet B (UVB), in addition to having carcinogenic activity, is required for the production of vitamin D3 (D3) in the skin
which supplies >90% of the body’s requirement. Vitamin D is activated through hydroxylation by 25-hydroxylases
(CYP2R1 or CYP27A1) and Ta-hydroxylase (CYP27B1) to produce 1,25(0H),D3, or through the action of CYP11A1 to
produce mono-di- and trihydroxy-D3 products that can be further modified by CYP27B1, CYP27A1, and CYP24A1.

The active forms of D3, in addition to regulating calcium metabolism, exert pleiotropic activities, which include
anticarcinogenic and anti-melanoma effects in experimental models, with photoprotection against UVB-induced damage.
These diverse effects are mediated through an interaction with the vitamin D receptor (VDR) and/or as most recently
demonstrated through action on retinoic acid orphan receptors (ROR)a and RORy. With respect to melanoma, low levels of
25(OH)D are associated with thicker tumors and reduced patient survival. Furthermore, single-nucleotide polymorphisms
of VDR and the vitamin D-binding protein (VDP) genes affect melanomagenesis or disease outcome. Clinicopathological
analyses have shown positive correlation between low or undetectable expression of VDR and/or CYP27B1 in melanoma
with tumor progression and shorter overall (OS) and disease-free survival (DFS) times. Paradoxically, this correlation was
reversed for CYP24A1 (inactivating 24-hydroxylase), indicating that this enzyme, while inactivating 1,25(0H),D3, can
activate other forms of D3 that are products of the non-canonical pathway initiated by CYP11A1. An inverse correlation
has been found between the levels of RORa and RORy expression and melanoma progression and disease outcome.
Therefore, we propose that defects in vitamin D signaling including D3 activation/inactivation, and the expression and
activity of the corresponding receptors, affect melanoma progression and the outcome of the disease. The existence of
multiple bioactive forms of D3 and alternative receptors affecting the behavior of melanoma should be taken into
consideration when applying vitamin D management for melanoma therapy.
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VITAMIN D IN A ‘NUTSHELL’ supplies >90% of the body’s requirement for this
Cutaneous Vitamin D Formation and the Relationship prohormone.”™ The UVB energy is absorbed by the unsa-
with Skin and UV-Radiation turated-B ring of 7-dehydrocholesterol (7DHC) in the

Ultraviolet radiation (UVR) with its highly energetic UVB epidermis, which leads to its photochemical transformation
wavelengths (1=280-320 nm) represents a major risk factor  to vitamin D3 (D3) or, depending on the UVB dose, to
for all forms of skin cancer including malignant melanoma  Jumisterol and tachysterol (Figure 1).> These ‘over-irradia-
(Figure 1).! The same spectrum of solar radiation, UVB, is  tion’ products have no known classical vitamin D activity,
necessary for vitamin D production in the skin, which  but may contribute to protection from UV-induced DNA
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Figure 1 Ultraviolet B as a double-edged sword. UVR promotes melanomagenesis and tumor progression. However, UVB is necessary for vitamin D
formation, which after activation by CYP enzymes can attenuate carcinogenesis, tumor progression and tumor growth. It is possible that
hydroxylumisterols may also have similar activity as indicated by our cell culture studies (not shown). UVB, ultraviolet B; UVR, ultraviolet radiation.

damage.®” The ability of UV to raise vitamin D status is
determined by factors such as amounts of sun exposure and
timing of that exposure,®’ skin surface area exposed,” and
skin type including pigmentation level.”®

How and Where the Biosynthesis of Active Forms of
Vitamin D Takes Place
The liver and kidney are the major organs where the
activation of D3 occurs, with liver 25-hydroxylases (CYP2R1
or CYP27A1) producing 25(OH)D3 and kidney la-hydro-
xylase (CYP27B1) converting this to 1,25-diydroxyvitamin D3
(1,25(0H),D3) (Figure 1).>>>1% Vitamin D activating
enzymes are also present in extra-hepatic and extra-renal
sites, including skin, so D3 can be fully activated in the
epidermis.>!!=1* 1,25(0OH),D3 (calcitriol) is inactivated by
CYP24A1, which initially hydroxylates at C24 then further
oxidizes the side chain to produce calcitroic acid.!>™'® It
carries out similar reactions on 25(OH)D3.

7DHG, the precursor to vitamin D3, is the last intermediate
in cholesterol biosynthesis via the Kandutsch—Russel pathway
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and is UV-sensitive due to the two double bonds in the
B-ring.!® Although it had been suggested that statin drugs
used for treatment of hypercholesterolemia patients may also
decrease the incidence of melanoma,?° clinical analyses do not
substantiate the above hypothesis.?!?> Thus the described
anti-melanoma activity in vitro?>?* may simply repre-
sent a cell culture phenomenon without a translation into
clinical reality. However, it is interesting that while a decrease
in 7DHC resulting from the inhibition of the cholesterol
biosynthesis might be predicted to reduce vitamin D synthesis
in the skin, the reverse has been found, 25(OH)D3 and 1,25
(OH),D3 levels are increased with statin treatment.2>2° The
mechanism underlying these observations is unclear.

Importance of Vitamin D in Biology, Including Cancer

The most clearly established effects of vitamin D are to help
maintain calcium and phosphate homeostasis, and to
optimize bone health and muscle function.?”?8 The hormonal
form, 1,25(0OH),D, increases active intestinal calcium (and
phosphate) absorption, which helps offset obligatory calcium
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losses from kidneys, gut, and skin. Severe vitamin D
deficiency impairs bone mineralization, resulting in rickets
(in children) and osteomalacia in adults. Vitamin D
deficiency is an independent predictor of falls in the elderly,
and circulating 250HD3 levels <60-75nmol/l have been
associated with lower extremity muscle weakness and
impaired balance, and accelerated losses in muscle mass,
strength, and physical function.?® Several meta-analyses
report that giving vitamin D, usually with calcium, to vitamin
D deficient individuals reduces falls, fractures and overall
mortality.?>=33 Associations between vitamin D deficiency and
poor outcomes of a variety of diseases including various types
of malignancies (eg, colon-, skin-, and breast cancer),
autoimmune diseases, infectious diseases, and cardiovascular
diseases have been generally reported in a large number of
studies.>

Novel Pathways of Vitamin D Activation

Alternative pathways of vitamin D activation have been
described recently.'® They are initiated by the action of
CYP11AL1 on the side chain of vitamin D with the preferred
initial site of hydroxylation being at C20. The major pathways
are: D3 - 20(0OH)D3+22(0OH)D3+17(0OH)D3 - (OH)nD3
and D2 - 20(OH)D2 - 17,20(0H),D2 - 17,20,24(0H);D2+
1,20(0OH),D2.>>47 CYP11A1 is the rate-limiting enzyme of
steroidogenesis, where its role is the conversion of cholesterol
to pregnenolone.*®4° 20(0H)D3 and other intermediates of
the pathway can be further hydroxylated by CYP27Al,
CYP24A1, CYP3A4, and CYP27B1, producing potentially
more than 21 hydroxymetabolites (reviewed in refs 19,50).
Many of these, including 20(OH)D3 and 22(OH)D3, are
produced in tissues expressing CYP11A1 (Figure 1), and they
are present in human epidermis and serum.**>1:52 They are
also biologically active (reviewed in refs 50,53,54).

In addition, CYP11A1 can hydroxylate 7DHC (pro-vitamin
D3) at C22 and C20 and then catalyze the oxidative cleavage
of the bond between C20 and C22 to produce 7-
dehydropregnenolone (7DHP),>>°¢ which can further be
hydroxylated to A7-steroids.’’®! Since A7-steroids are
detectable in the serum and epidermis,®>>’=°! they can
potentially be transformed to the corresponding vitamin D
analogs with a short side chain (pregnacalciferols (pD)) or no
side chain (androgen-like (aD)) or their pregnalumisterol
(pL) counterparts after exposure of skin to UVB.>027%5 The
pD and aD compounds are also biologically active.5%%7
Moreover, CYP11A1 can metabolize lumisterol to several
hydroxylumisterol (L) derivatives and pL®® (Figure 1).

MECHANISM OF ACTION OF VITAMIN D

The pleiotropic activities of active forms of vitamin D are
mediated through interaction with the vitamin D receptor
(VDR) also known as nuclear receptor subfamily 1, group I,
member 1 (NR1/1),°°7¢ a member of the nuclear receptor
superfamily.”” Genomic activities of vitamin D are initiated
when the VDR-ligand complex forms a heterodimer with the
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retinoid receptor, RXR, in the cytoplasm which then
translocates to the nucleus, where it binds to vitamin D
responsive elements in target genes and recruits either
coactivators or corepressors to regulate transcription.”’7%78
The VDR is expressed in all organs and almost all cells of the
body, where it regulates a variety of their functions in
addition to the regulation of calcium metabolism.”%71:73
Approximately 3% of the mammalian genome is regulated,
directly and/or indirectly by signaling secondary to activation
of the VDR.”? The VDR is also widely expressed in skin’? and
regulates various functions, including barrier, secretory,
adnexal and immune functions, and protecting against UV-
induced damage.”>30-88 Thus the skin is not only a source of
active vitamin D3 but is also a target of its activity.

The VDR also contains an alternative 1,25(OH),D3-binding
A-pocket occupation of which can induce rapid non-genomic
responses at the membrane level, independent from its action
as a nuclear receptor.’®8=°! Furthermore, 1,25D3-membrane-
associated, rapid response steroid-binding protein (1,25D3-
MARRS, PDIA3) has been identified as an alternative
membrane bound receptor for active forms of D3 that can
regulate some phenotypic functions.”>** Finally, some active
hydroxylated forms of D3 can act on the retinoic acid-related
orphan receptors (RORs) a and y as inverse agonists.”*~°
Thus, in addition to the well-established mechanism of
activation by binding of active forms of vitamin D to the
genomiic site of the VDR, there are non-genomic membrane-
associated sites of action (A-VDR and 1,25D3-MARRS) as well
as other nuclear receptor targets comprising ROR-a and -7.%>
The regulatory targets for pD and aD secosteroids or
lumisterol compounds remain to be identified.

ANTICARCINOGENIC PROPERTIES OF VITAMIN D: AN
OVERVIEW

Population-based studies that originally started in 1980 by
Garland and Garland,”” proposed that insufficient levels of
vitamin D in the serum increase the risk and incidence
of human cancers and decreases survival.”®~1% The results of
epidemiological studies have been supported by animal-based
reports showing an increased cancer risk in VDR-deficient
animals,'”” and reduced cancer incidence and tumor
shrinkage when treated with vitamin D.>!08-110 Moreover,
malignant cells, including melanoma, express VDR and
respond to the pleiotropic activities of 1,25(0H),D3.108:111
Subsequently, molecular analysis identified a number of genes
and signaling pathways located downstream of the VDR.>%%
Active forms of D3 can enhance superoxide dismutase (SOD)
1 and 2 activities, upregulate expression of GADD45, p53 and
others, all in order to protect against oxidative DNA damages
(reviewed in ref. 69). In addition, 1,25(OH),D3, acting
through the VDR, inhibits cell proliferation both in normal
and malignant cells.'’>"!1>  Similarly, newly discovered
vitamin D derivatives, such as 20(OH)D3, 20(OH)D2, 1,20
(OH),D3, and 20,23(OH),D3, show VDR-mediated anti-
proliferative properties comparable to those of 1,25(0OH),
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The proliferation of cells is regulated via complex, tissue-
dependent signaling pathways with active forms of vitamin D
affecting the expression of growth factors and proteins
controlling the «cell cycle. Regulation of the cyclin-
dependent kinase (CDK) inhibitors, p21 and p27, by 1,25
(OH),D3 induces cell cycle arrest.!?!7123 Also, active forms of
vitamin D increase the expression of IGF-binding protein 3,
thereby inhibiting the IGF-1- and IGF-2-stimulated cell
proliferation'?4712¢ and decreases telomerase reverse trans-
criptase (TERT), which leads to an attenuation of telomerase
activity and cell division (reviewed in ref. 127). 1,25(OH),D3
is important both in early and late stages of cancer
development and progression regulating the expression of
TGEFp. By increasing the expression of TGFf, active forms of
vitamin D enhance growth inhibition.'?813% On the other
hand, 1,25(OH),D3 attenuates the invasion and migration
induced by TGF-$1/62, in addition to inhibiting the
epithelial-mesenchymal transition (EMT) and inhibiting the
secretion of MMP-2 and MMP-9.13! These mechanisms, and
enhanced expression of E-cadherin, a well-known tumor
protein suppressing the invasive phenotype of cancer cells, by
vitamin D, are able to decrease the metastatic potential of
cancer cells treated with 1,25(OH),D3.13»133

Active forms of vitamin D, both in normal and
malignant cells, stimulate differentiation, maturation and
senescence. > NONSI34135 These processes are regulated by
cell-specific mechanisms and involve inhibition of hed-
gehog, f-catenin, NFxB, and PI3K signaling pathways
(refs 134,136,137 reviewed in refs 127,138). Apoptosis is also
regulated by vitamin D. 1,25(OH),D3-induced programmed
cell death is mainly due to downregulation of the anti-
apoptotic proteins Bcl-2 and Bcl-Xj, upregulation of pro-
apoptotic BAX, GOS2, DAP-3, FADD, and caspases (reviewed
in refs 69,127,139). In addition, to control and modulation
of proliferation, apoptosis, and differentiation/maturation,
a variety of other tissue functions, important in tumor
initiation, development and progression, are regulated by
active forms of vitamin D. Consistently, vitamin D has
been shown to act as an anticancer drug by inhibiting
angiogenesis.!*®!4! As illustrated by cell- and animal-based
studies, inhibition of IL-8-mediated angiogenesis, a reduction
in endothelial cell proliferation, and a downregulation of
vascular endothelial growth factor (VEGF), including
hypoxia-induced VEGF expression, is mediated through
vitamin D.!%142143 Autophagy represents a double-edged
sword that has an essential role in cell survival, but at the
same time it causes cell death when apoptotic pathways are
inactive. In tumors, autophagy is activated following antic-
ancer treatment (reviewed in ref. 144) and 1,25(OH),D3-
induced death of malignant cells includes this apoptosis-
independent pathway through upregulation of beclin-1
(autophagy-related gene, the mammalian ortholog of yeast
Atg6 protein). Similar autophagy-related cancer cell death

while, at the same time showing less calcemic
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induction is also shown by the vitamin analog, EB1089.145-148
Vitamin D-mediated cell death by autophagy is enhanced
when pl19 is lost and attenuated by loss of p27.'%
Detailed analysis of autophagy in cancer cells revealed that
1,25(0OH),D3 switches the mode of autophagy from cyto-
protective to cytotoxicity, sensitizing cells to antitumor
treatment.'#>!>% Another autophagic mediator, mTOR, can
be suppressed by vitamin D-regulated mTOR inhibitors.'>!
These very recent discoveries concerning 1,25(0OH),D3 and
autophagy implicate a novel potential therapeutic approach
for melanoma therapy through targeting autophagy with
active forms of vitamin D.!?

The 1,25(0OH),;D3-regulated anti-inflammatory effect is
primarily mediated by inhibition of prostaglandin (PG)
signaling. 1,25(OH),D3 regulates the PG pathway by
suppressing cyclooxygenase 2 (COX-2), by increasing expres-
sion of the catabolic enzyme 15-hydroxyprostaglandin
dehydrogenase, and by reducing expression of prostaglandin
receptors (reviewed in ref. 153). Promoting the expression of
mitogen-activated protein kinase phosphatase-5 (MKP5),
which prevents phosphorylation and activation of the stress
kinase p38, results in attenuation of the production of pro-
inflammatory cytokines such as IL-6. The anti-inflammatory
effect of 1,25(OH),D3 has been shown in normal cells.!** The
nuclear factor kappa B (NFxB) signaling pathway is also
regulated by 1,25(0OH),D3, and shows both pro- or anti-
inflammatory properties since 1,25(OH),D3 regulates both
the phosphorylation of the inhibitor I kappaB alpha (IkBa)
via Akt kinase and increases IkBa synthesis.!> 1,25(OH),D3
inhibits NF«B signaling by preventing the translocation of the
p65 subunit to the nucleus, thereby attenuating NFxB-
mediated IL-8 transcriptional activity.!4?

Vitamin D effects on inflammation (important in cancer
development) are not limited to just regulation of anti- and
pro-inflammatory factors, but also involve the regulation of
cells of the immune system. This regulation is complex and
multidirectional (reviewed in ref. 69). The major immune
cells targeted by 1,25(0OH),D3 are T helper (Th2) lympho-
cytes. 1,25(OH),D3 downregulates Thl cytokines, upregu-
lates Th2 cytokines by inhibiting production of the
pro-inflammatory cytokines such as IL-17, TNF, IL-1,
IFN-y, and IL-2, while at the same time promoting
production of the anti-inflammatory cytokines such as IL-4
and IL-10. Immune cells that are the target for 1,25(OH),D3
and essential for cancer prevention are the monocytes/
macrophages, dendritic cells, and regulatory T cells (Treg).
Vitamin D is able to modulate the function of immune cells
since both the VDR and CYP27BI1 are expressed by these cells
(reviewed in refs 69,156). As is mentioned above, the
anticancer action of vitamin D is complex and multi-
dimensional, resulting from its pleiotropic properties, and
involves modulation of cancer cell function, modification of
the cancer microenvironment, alteration of the immune
response, and others.
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VITAMIN D AND MELANOMA: CLINICAL IMPLICATIONS
Relationship between UVR and Melanoma

The relationship between sunlight exposure and melanoma is
not direct, since high levels of intermittent UV exposure seem
to be more related to development of melanoma in
susceptible individuals rather than high continuous exposure,
as seen in outdoor workers.!?” UV exposure produces DNA
damage and immune suppression, both of which contribute
to melanoma development.!*®1 Tnadequately repaired DNA
damage produced by both UVB and UVA, along with UV-
induced immune suppression are involved in the pathogen-
esis of melanoma, particularly on sun-exposed skin.'¢%16!
Inadequately repaired DNA damage in melanocytes may lead
to mutations or amplifications of genes involved in a variety
of growth and survival pathways, such as BRAF, Kit and cyclin
D1.192 Melanocytes differ from keratinocytes in that they have
reduced proliferation and apparently reduced capacity to
repair DNA, but may be more resistant to apoptosis, despite
significant DNA damage. These biological differences may
help to explain the different patterns of sun exposure
associated with melanoma in comparison with squamous cell
carcinoma,!60-163

Malignant Melanoma: An Overview
Malignant melanoma, affecting large segments of the
population with a relatively high incidence rate (estimated
new cases and deaths in 2016 in the USA are 7630 and 10 130,
respectively) compared with other cancers and a high
mortality rate,!6%195 represents a significant clinical problem.
Melanoma encompasses, respectively, 6% and 3% of all new
cancer cases in the USA in 2016 for males and females,
excluding non-melanoma skin cancers (NMSC) of epithelial
origin.!6>

The most efficient methods of melanoma management
involve prevention, early diagnosis and surgical excision of
lesional skin when the disease is localized to the skin.!®167
An impressive advancement in new therapeutic approaches
including targeting molecular pathways for advanced mela-
nomas (stages III and IV diseases) or modulations of immune
responses, have been made.!*®~173 Unfortunately, the utilities
of these strategies are somewhat limited because of adverse
effects, financial costs and inherent or acquired tumor
resistance mechanisms leading to recurrent disease and death
of the patient (discussed in refs 173—175). Therefore, defining
new regulatory targets and compounds that are nontoxic,
economical with relatively limited side effects, is needed.
Examples of such targets and such compounds are linked with
vitamin D signaling as indicated by the anticancer activity of
active forms of vitamin D and the information listed below.

Polymorphism of Vitamin D-related Genes and
Melanoma
Low levels of 25(OH)D3 or 25(OH)D2 are associated with

histologically thicker tumors and reduced melanoma
survival,'7¢7182  which can also be connected with a
710

polymorphism of the gene encoding the vitamin D-binding
protein (VDBP).!8318% There is also evidence that single-
nucleotide polymorphisms (SNPs) of the VDR gene may
affect melanomagenesis or disease outcome.!”8182185-189 The
role of the VDR in melanomagenesis is further illustrated by
experimental models of melanoma induction where silencing
of VDR or its partner RXR resulted in development of
melanocytic tumors after chemically or UVB-induced
carcinogenesis.'®*1%2 This is consistent with the fundam-
ental role of the VDR in protection against skin
carcinogenesis. 1-7280:82,193-196

Although a number of VDR gene polymorphisms have
been identified and some of them can modify the risk and
disease outcome (reviewed in refs 197,198), the published
reports present some contradictory data related to VDR
polymorphisms in melanomas and their association with
disease outcome,!8%186:199.200 The most studied VDR poly-
morphisms are Fokl, Bsml, Taql, and Cdx2. In some studies
the Bsml A allele was associated with improved melanoma
survival but increased melanoma risk,'8>18¢ while other
reports showed reduced melanoma risk!’® or poor prognosis
of patients with low serum vitamin D levels.'®* Another
polymorphism, the Fokl T allele was associated with increased
melanoma risk,!”® and the Tagl ‘t' (C) allele with a protective
role in melanoma-specific survival.'®> The observed discre-
pancies could be in part explained by the study of
Newton-Bishop et al,'® showing that the effect of specific
polymorphisms on survival of melanoma patients was
associated with the serum level of vitamin D. Also, although
VDR SNPs rs7299460, rs3782905, rs2239182, rs12370156,
rs2238140, rs7305032, rs1544410 (Bsml), and rs731236
(Taql) showed a statistically significant trend (P<0.05) for
association with melanoma-specific survival in multivariate
analysis, none of them was significantly associated with
Breslow thickness, ulceration or mitotic rate.!3> The authors
of this study proposed that the VDR gene may influence
survival from melanoma, although the mechanism by which
VDR exerts its effect may not be driven by tumor
aggressiveness, but influenced by the host environment.'®>

Negative Correlation between VDR Expression and
Melanoma Progression

Since the VDR is a critical mediator of the biological action of
active forms of D3 and the reduction of its expression
abrogates anti-tumorigenic activity (reviewed in ref. 69),
clinicopathological studies have been performed on a cohort
of patients monitored by the Oncology Center in Bydgoszcz
to establish a relationship between VDR expression and
progression of disease in melanoma patients??292 (see
Figure 1 for an overview). VDR expression decreased in
advanced cutaneous melanomas and their metastases and this
decrease was associated with the vertical growth phase. The
lowest and/or lack of VDR expression was associated with
highest Breslow thickness, Clark level and the highest
melanoma stage. Also, the ulcerated melanomas, with lack

Laboratory Investigation | Volume 97 June 2017 | www.laboratoryinvestigation.org


http://www.laboratoryinvestigation.org

Vitamin D and melanoma
AT Slominski et al

c Nuclear VDR - PM d Cytoplasmic VDR - PM e Nuclear VDR-MM
Log-rank Test: 12=6.162, p=0.0459
Logrank test for trend: 3°=4.141, p=0.0419
120 120 No VDR vs Low VDR p=0.0442 120
= No VDR vs Low VDR p=0.0244 = No VDR vs High VDR p=0.0493 = Log-rank Test: 3°=4.384, p=0.0363
® 100 No VDR vs High VDR p=0.0411 & 100 &£ 100
5 w0 s w0 S 0
) ) )
Ll 9 ed VDR present
T 40 T 40 T 4
3 o - @
> > High VDR 2
20 20 20
Q © No VDR ©
0+ T Y T T ? 0+ T T T T 7 0+ T T T T T
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Days after primary diagnosis Days after primary diagnosis Days after primary diagnosis

Figure 2 Correlation between VDR expression and melanoma survival. The representative VDR immunostaining in primary melanomas in RGP (a; two
cases separated with dotted line) and VGP (b; two cases separated with dotted line) are shown. Dependence of OS on nuclear (c) and cytoplasmic (d)
immunostaining VDR in RGP and VGP of primary melanomas, respectively, and on nuclear VDR in melanoma metastases (e). VDR-positive cells are
visualized with Red AP Substrate; scale bars, 50 um. The OS graphs (slightly modified) are reproduced with permission from ref. 201 (c—e). Vitamin D
receptor was immunodetected with rat antibody (clone 9A7; Abcam, Cambridge, MA, USA; a dilution 1:75) and visualized with Red AP Substrate (Vector
Laboratories, Burlingame, CA, USA). VDR immunostaining was scored as negative (0), weak (1), moderate (2), and strong (3), based on staining intensity.
For analysis melanomas assessed as having moderate and strong VDR immunostaining were classified as high VDR, weak as low VDR, and negative as
no VDR. Overall survival was calculated as the time between surgical treatment and diagnosis of primary melanoma and the time of death. Survival
analysis was performed using Mantel-Cox (Log-rank) test and Log-rank test for trend. Scale bars, 50 um. MM, metastatic melanomas; OS, overall survival;

PM, primary melanomas; RGP, radial growth phase; VDR, vitamin D receptor; VGP, vertical growth phase.

or non-brisk tumor infiltrating lymphocytes and nodular type
were characterized by lower VDR expression. Correspond-
ingly, longer overall and disease-free survival (DFS) was
accompanied by higher VDR expression both in primary and
metastatic melanomas (Figure 2).201:202

As mentioned above, NF«B is an important regulator of
inflammation and cancer developme:nt,203’204 including
melanoma, in which it has an important role in maintaining
the malignant behavior.2>2%7 We have shown that biologi-
cally active forms of vitamin D not only induce the VDR
translocation to the nucleus and inhibit melanoma
proliferation®® but also that this process is associated with
the downregulation of the NF«xB pathway via inhibition of the
nuclear translocation of the p65 NFxB subunit, its accumula-
tion in the cytoplasm and inhibition of NF«B binding to
DNA.!'?0 Furthermore, this process differs in nonpigmented
and pigmented cells.!? Nonpigmented cultured melanoma
cells and nonpigmented and slightly pigmented human
cutaneous melanomas show predominantly nuclear localiza-
tion of the p65 NFxB subunit compared with highly
pigmented melanomas.'?? Interestingly, the nonpigmented
melanoma cells, showing higher nuclear VDR and NFxB

www.laboratoryinvestigation.org | Laboratory Investigation | Volume 97 June 2017

expression, are more susceptible to vitamin D-mediated
downregulation of NFxB activity and inhibition of prolifera-
tion than pigmented melanoma cells.'?° Combined analysis of
clinical melanoma samples reported in refs 120,201,202
showed positive correlation between the higher percentage
of NFkB-positive melanoma cells and the higher nuclear
immunostaining of VDR (r=10.35, P=0.001) and percentage
of the Ki-67-positive melanoma cells (r=0.20, P=0.039).
This suggests a complex interaction between ligand-activated
nuclear anti-melanoma activity of the VDR, connected at least
in part with inhibition of NFxB, in a context-dependent
manner. Paradoxically, less differentiated amelanotic mela-
noma cells expressing NFxB with higher proliferative
potential are a better target for the anti-melanoma activity
of vitamin D than the more differentiated melanotic cells.'?°
One of possible explanations for this phenomenon would be a
communication between the hypoxia-inducible factor-la
(HIF-1a) and VDR and NFxB signaling pathways, since
induction of melanogenesis dramatically stimulates nuclear
expression of HIF-1a.2%® The mechanism of these interactions
deserve further careful studies, since recent reports have
shown a negative effect of melanin content on melanoma
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Figure 3 Correlation between CYP27B1 expression and melanoma survival. The immunostaining of melanomas classified as CYP27B1-negative (a; VGP)
and CYP27B1- positive (b; RGP) are shown. Dependence of overall survival on immunostaining of CYP27B1 (c) and concomitant nuclear VDR
immunostaining (nVDR) and CYP27B1 (d) in RGP of primary melanomas are also shown. The graph ¢ (slightly modified) is reproduced with permission
from ref. 223. CYP27B1 was detected with rabbit antibody (clone H-90, Santa Cruz Biotechnology, Santa Cruz, CA, USA, a dilution of 1:75) and visualized
with ImmPACT NovaRED substrate (Vector Laboratories, Burlingame, CA, USA). CYP27B1 immunostaining was scored semiquantitatively, as follows:
SQ=mean (IRxSI)/100, where IR represents the percentage of immunoreactive cells and Sl is the staining intensity as negative (0), weak (1), moderate
(2), or strong (3) and melanoma cases were stratified according to SQ-score as follows: no CYP27B1=0.0-0.99, low CYP27B1=1.0-1.99, high

CYP27B1 =2.0-3.0. Overall survival was calculated as time between surgical treatment and diagnosis of primary melanoma and the time of death.
Survival analysis was performed using Mantel-Cox (Log-rank) test and Log-rank test for trend. nVDR immunostaining assessment was presented above
and melanomas showing low or high nuclear VDR immunostaining were classified as ‘nVDR+" and melanomas showing lack of VDR as ‘nVDR-'.
Melanomas showing low or high CYP27B1 immunostaining were classified as ‘CYP27B1+’ and melanomas showing lack of CYP27B1 as ‘CYP27B1-". Scale
bars, 50 um. PM, primary melanomas; RGP, radial growth phase; VDR, vitamin D receptor; VGP, vertical growth phase.

outcome in stages III and IV disease,?” or the outcome of

radiotherapy.?!? This is consistent with a double-edge sword

role for melanogenesis in the behavior of melanoma
cells.211-220

Negative Correlation between CYP27B1 Expression and
Melanoma Progression

Besides kidney, CYP27B1 is also expressed by skin
cells,!>12221.222including melanoma cells.’?? In human
cutaneous melanomas a significant reduction of CYP2B1
expression vs normal skin was observed.?”> The expression
pattern in a variety of clinical samples of cutaneous
melanomas was again similar to VDR, with the lowest
CYP27B1 level being observed in more aggressive and more
advanced melanomas (vertical growing melanomas, Clark
levels I1I-V and Breslow thickness >2.0 mm and metastasiz-
ing melanomas; Figure 3a and b). Melanoma cells localized in
deeper layers of skin (reticular dermis) were characterized by
lower CYP27B1 expression when compared with papillary
dermis. A high proliferation index and ulceration of
melanomas were accompanied by a decreased CYP27B1 level.
Consequently, a lack of or reduced expression of CYP27B1 in
melanoma cells was associated with both shorter overall and
disease-free survival of melanoma patients (Figure 3c).??3
This effect was even more evident when analysis was
performed for OS of patients that were both negative for
nuclear VDR and negative for CYP27B1 expression
(Figure 3d). The reduction of CYP27BI expression in
melanoma cells was also seen in a series (8 out of 11) of
melanoma cell lines vs both normal melanocytes and
keratinocytes.??> In addition, similar to the VDR, both
cultured melanoma cells and clinical samples of melanoma,
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showed an inverse correlation between the CYP27B1 level and
high melanin content.???

What is the Role of CYP24A1 in the Regulation of
Melanoma Behavior?

The best known physiological function of CYP24Al is
inactivating 1,25(OH),D3 and maintaining vitamin D home-
ostasis via a negative feedback loop.®"11%224 Since elevated
levels of CYP24A1 have been observed in some cancers,??®
it has been proposed that inhibition of CYP24Al activity
represents a realistic molecular target for cancer therapy
(reviewed in refs 69,127,226). However, this theory may not
fully apply towards melanoma treatment. Specifically,
CYP24A1 hydroxylates 20(OH)D3), producing several dihyd-
roxy-derivatives including 20,24-dihydroxyvitamin D3 (20,24
(OH),D3) and 20,25-dihydroxyvitamin D3 (20,25(0OH),D3)
which show enhanced anti-melanoma activity in vitro.!'® In
addition, our studies on CYP24Al expression in human
cutaneous melanomas, showed the highest CYP24A1 levels in
melanocytic nevi and early stage melanomas.??” CYP24Al
expression decreased with the melanoma progression as
defined by Breslow thickness, Clark levels, pT, pN, pM, and
overall stage (Figure 4a and b).??” Decreased CYP24A1 expre-
ssion was also associated with poor prognostic factors
including nodular type, high mitotic index, presence of
ulceration, and necrosis.”?’ Finally, reduced CYP24Al
expression was related with shorter overall and disease-free
survival of melanoma patients (Figure 4c).??’ Again, mela-
noma patients that were positive for both CYP24Al and
nuclear VDR had significantly the best probability of survival
(Figure 4d). Reduced CYP24Al gene expression was also
found in 12 out of 13 melanoma cell lines in comparison to
normal melanocytes.??’ It is possible that these unexpected
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Figure 4 The relationship between CYP24A1 expression, VDR and melanoma survival. The immunostaining of melanomas classified as CYP24A1-
negative (a; VGP) and CYP24A1-positive (b; RGP) are shown. Dependence of overall survival on immunostaining of CYP24A1 (c) and concomitant nuclear
VDR immunostaining (nVDR) and CYP24A1 (d) in RGP of primary melanomas are also shown. CYP2A1 was detected with mouse antibody (Abcam,
Cambridge, UK, dilution 1:40) and visualized with ImmPACT NovaRED substrates (Vector Laboratories, Burlingame, CA, USA). CYP24A1 immunostaining
was scored semiquantitatively, as follows: SQ=mean (IR x SI)/100, where IR represents the percentage of immunoreactive cells and Sl is the staining
intensity as negative (0), weak (1), moderate (2) or strong (3) and melanoma patients were stratified according to the SQ-score as follows: SQ

0.0-1.0=no CYP24A1, SQ 1.1-2.0=

low CYP24A1, SQ 2.1-3.0 =high CYP24A1. Overall survival was calculated as the time between surgical treatment and

diagnosis of primary melanoma and the time of death. Survival analysis was performed using Mantel-Cox (Log-rank) test and Log-rank test for trend.
nVDR immunostaining assessment was presented above and melanomas showing low or high nuclear VDR immunostaining were classified as ‘nVDR+’
and melanomas showing lack of VDR as ‘nVDR-'. Melanomas showing low or high CYP24A1 immunostaining were classified as ‘CYP24A1+" and
melanomas showing lack of CYP24A1as ‘CYP24A1-". Scale bars, 50 um. RGP, radial growth phase; VDR, vitamin D receptor; VGP, vertical growth phase.

findings can be explained by the recently described CYP24A1
ability to generate new potent vitamin D hydroxy derivatives
with anti-melanoma activity.!!® In addition, expression of
CYP24A1 had, in contrast to VDR and CYP27B1, a positive
correlation with melanin pigmentation both in melanoma
samples and cultured melanoma cells.??” Therefore, we
propose that the role of CYP24Al in progression of
melanocytic tumors may be complex, because it is involved
not only in the inactivation of 1,25(OH),D3, but also in the
metabolism of 20(OH)D3 to its more active forms that are
prone to la-hydroxylation.

Special Considerations on the Role of Vitamin D Signaling
in Melanomagenesis and Melanoma Progression

Both the information from the literature and our own data
summarized above clearly show that the attenuation of
vitamin D signaling at the local and systemic levels affects
melanoma progression and the natural history of the disease
including overall survival. Specifically, serum levels of 25(OH)
D3, SNPs in VDR and VDBP will indicate global defects
affecting both systemic and local responses aimed at cancer
prevention or inhibition. In addition, loss of VDR, CYP27B1
and CYP24Al antigens is associated with negative patholo-
gical prognostic factors and with shorter OS and DFS. Re-
analysis of the data reported in refs 201,202,223,227 also
showed positive correlation between nuclear expression of
VDR and expression of CYP24A1 (r=0.32, P=0.01), but not
with CYP27B1, and positive correlation between CYP27B1
and CYP24A1 expression (r=0.22, P=0.045). This is probably
related to an upregulation of CYP24A1 by CYP27BI-
produced 1,25(OH),D3 acting on the VDR. With respect to
CYP27B1 and CYP24A1 SNPs, adequate information on their
relationship with melanomagenesis is missing; however, it is
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possible as described for other tumors.??-230 Unfortunately,
to the best of our knowledge there is a lack of information on
the association between SNPs of CYP11Al and melanoma,
and with cancer in general. Also, there is a lack of information
on alternative splicing of VDR, CYP27B1, CYP24Al, and
CYPIIAI gene transcripts and the role the resulting proteins
may have in melanomagenesis. It is worthy of mention that in
another signaling system (corticotropin releasing hormone
receptors that regulate melanogenesis and have anti-
melanoma activity?>1723%), alternative splicing can produce a
variety of protein products with different and sometimes
opposite functions.’**2%¢ In additionally, findings that
vitamin D signaling and its antitumor activity can be affected
by melanin content are intriguing, but consistent with the
hypothesis that inhibition of melanin synthesis could sensitize
melanoma cells to antitumor treatment and improve

survival.175’210’21 1,213

VITAMIN D AND EXPERIMENTAL MODELS OF
MELANOMA

Anti-melanoma Activity of Classical Forms of Vitamin D
In 1974, Oikawa and Nakayasu described for the first time the
effects of cholecalciferol and ergocalciferol on melanoma,
reporting induction of melanoma pigmentation in culture,?’
an effect that could not be reproduced by other investigators
(reviewed in ref. 213). However, it was Colston and
colleagues, who first observed the inhibition of melanoma
cell growth by 1,25(0OH),D3 and the presence of the VDR
in cultured melanoma cells, as well as in tumor tissue.!!!
These two findings, confirmed by other groups, opened the
door for the testing of various natural and synthetic
secosteroids as potential candidates for melanoma treatment
(see refs 197,238 for recent reviews). Two years after Colston’s
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discovery, Frampton and collaborators, showed that two
known metabolites of 1,25(OH),D3, namely: 1,24,25(OH)
3sD3 and 1,25,26(OH)3;D3 also effectively suppressed the
proliferation of malignant melanoma MM96 cells.?*® This
observation was supported by the description of vitamin D
metabolism in melanoma cells.?**?4! Further studies showed
that vitamin D inhibited the growth of several melanoma cell
lines, including: human: A375,%42 ME18,>4> MeWo,?#44-246
RPMI 7951,47:248 SK Mel 28,247:24%2°0 SKMEL-188, WM35
and WM1341;39’40’64’118’119’242’251 mouse B16;67’252’253 and ha-
mster Bomirski melanomas.®”!18 Furthermore, 1,25(0OH),D3
inhibited anchorage-independent growth and plating effi-
ciency of human SKMEL-188, hamster AbC1,3%¢4118 and
murine B16 (ref. 253) melanomas. Interestingly, Reichrath’s
group and many others noticed that some melanoma lines did
not respond to classic vitamin D analogs.**?*" Vitamin
D-resistant melanomas in some experimental conditions
included human Mel-Juso,2° SK Mel 5,246:250,254 K Mel
25, and IGR,?? as well as in murine melanomas $91,%% and
B16.2°° For the mouse B16 melanoma cell line it should be
noted that the diverse effects of 1,25(OH),D3 were observed
by several groups listed above and this phenomenon was
linked to different experimental setups and the use of
different subclones of B16 (see ref. 197 for discussion).

Although some authors reported melanoma cell-type
dependent pro-apoptotic activity of 1,25(0H),D3,24* others
have failed to find such a correlation?** despite of a significant
reduction in melanoma proliferation.?*>2>7 It has been
reported that 1,25(OH),D3 induces apoptosis of WM1341
melanoma, but not MeWo cells.?4* Therefore, it is possible
that the pro-apoptotic activity of 1,25(OH),D3 depends on
cell-type-specific factors as recently described in the gastric
cancer cell line HGC-27 (see recent review ref. 69). Finally,
1,25(0OH),D3 protects normal human primary melanocytes
from apoptosis.?>

There is still ongoing debate concerning the influence of
vitamin D on melanin production.?!32>>2%9 An early study by
Oikawa,?*” was supported by reports from different labora-
tories, that induction of pigmentation occurred through
tyrosinase activation.?>32°0 However, other reports concern-
ing 1,25(0OH),D3 (ref. 255) as well as a studies with the
vitamin D precursor (7DHC)?*”?% and other vitamin D
metabolites, including 25(OH)D3, 1(OH)D3, and 24R,25
(OH),D3 (ref. 253) showed no effect on pigmentation.

The major problem in treatment of malignant mela-
nomas is the high metastatic rate and multidrug resistance.
1,25(0OH),D3 was found to inhibit invasiveness, cell adhesion
to the extracellular matrix and type IV collagenase activity of
B16 cells; however, it did not influence cell migration.?>® The
sensitivity of melanoma to 1,25(0OH),D3 seems to correlate
with stimulation of expression of genes encoding enzymes
that metabolize this hormone. Thus, in melanomas respond-
ing to the inhibitory effects of 1,25(OH),D3, rapid over-
expression of the 24-hydroxylase gene (CYP24AI) was
observed, which coincided with decreased expression of the
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CYP27BI gene.®7246250 Also, several studies indicated ele-
vated expression of VDR in melanomas subjected to vitamin
D treatment.®”2>%261 This effect appeared to be cell line
specific.?4%?4 Taken together, the responsiveness of mela-
noma cells to 1,25(OH),D3 strongly depends on VDR
expression and its transcriptional activity as shown by Harant
et al?®? explaining the higher sensitivity of RPMI 7951 cells**
to 1,25(0OH),D3, effects also substantiated by our studies.??

Anti-melanoma properties of natural metabolites of
vitamin D have also been tested in animal models of
melanoma. The inhibition of solid tumor growth by 1,25
(OH),D3 was observed for VDR-expressing COLO 239F cells
derived from a malignant melanoma, but not for the
receptor-negative RPMI 7932 melanoma cell line.?®® Inter-
estingly, while 1,25(OH),D3 did not inhibit exponential
tumor growth in mice inoculated with mice B16 melanoma,
both spontaneous or experimental pulmonary metastasis were
inhibited by 1,25(0H),D3.2°¢ Also, Albert and coworkers
found that 1(OH)D2 effectively decreased growth of pigmen-
ted ocular tumor in the Tyr-Tag transgenic mouse.?%*

Anti-Melanoma Activity of New Forms of Vitamin D
As mentioned in section “Novel Pathways of Vitamin D
Activation,” novel vitamin D hydroxy derivatives and pD and
aD secosterids show antiproliferative, pro-differentiation,
anticancer, anti-inflammatory and antifibrotic activities that
depend on the target cell-type.3%37:63-66,116,117,120,135,265-271
Hydroxy derivatives of vitamin D3 with a full-length (8C) side
chain of which the best characterized so far are 20(OH)D3, 20
(OH)D2 and 20,23(OH),D3, are nontoxic and noncalcemic
in rodents at pharmacological doses (3-4 ug/kg (reviewed in
ref. 53). Recent tests performed on mice showed a lack of
calcemia by 20(OH)D3 at extremely high doses of 30-60 ug/
kg administered to mice daily,?%%?2 indicating its potential to
be used therapeutically.

20(OH)D3, 20(OH)D2 and 20,23(OH),D3 were exten-
sively tested in vitro for their activities on melanocytes and
melanoma cells (reviewed in ref. 53). Specifically, they
inhibited melanocyte and human and hamster melanoma
proliferation, and melanoma colony formation in monolayer
and soft agar (anchorage-independent growth) with a potency
similar or better than 1,25(OH),D3, while having no effects
on melanogenesis or dendrite formation.367:118:120.271 Thege
effects on melanoma were significantly higher than those
exerted by 25(OH)D3. The in vitro anti-melanoma effect of
20(OH)D3 was associated with inhibition of NFkf activity in
a human melanoma line.!?* Similar anti-melanoma activities
were exerted by their la-hydroxy analogs. Interestingly, 1,25
(OH),D3 and 1,20(OH),D3 inhibited dendrite formation in
normal melanocytes, while derivatives without a 1a-hydroxyl
group had no effect on melanocyte morphology. The addition
of a la-hydroxyl group potentiated the antiproliferative effect
against melanocytes but not melanoma cells.!!® The anti-
melanoma effect of 20(OH)D3 was also demonstrated in
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some clones of B16 melanoma, however, with lower potency
than that for 1,25(0OH),D3.%7

Since melanogenesis can affect behavior of normal and
malignant melanocytes,!5%208:211=214.275 the effect of melano-
genesis on responsiveness to vitamin D analogs was tested.
Induction of melanin pigmentation attenuated the respon-
siveness of human melanoma cells to 20(OH)D3 and 1,25
(OH),D3, which was associated with a decrease in VDR
expression.'?® This was consistent with lower expression of
VDR in pigmented melanomas as measured by
immunocytoc:hemistry.201’202 However, moderate melano-
genic activity amplified the anti-melanoma effect of 1,25
(OH),D3 and 20(OH)D2 in the F10 clone of B16 melanoma,
with 20(OH)D3 having the opposite effect.%” Interestingly,
pigmentation attenuated 1,25(OH),D3-induced translocation
of the VDR to the nucleus and hyperpigmentation of B16
melanoma cells was associated with a decrease in the
expression of the VDR and RXR genes.®’

We also performed tests on products of CYP27A1 and
CYP24A1 action on 20(OH)D3, namely 20,24(OH),D3, 20,25
(OH),D3 and 20,26(0OH),D3 and their la-hydroxy deriva-
tives (products of CYP27B1 action).*®!!” These secosteroids
showed stronger inhibition of colony formation by human
melanoma cells than the parent 20(OH)D3, with addition of a
la-hydroxyl group having either small stimulatory or
attenuating effects.*>!!® The potencies of the hydroxy
derivatives of 20(OH)D3 are consistent with their docking
scores predicted using the crystal structure of the ligand-
binding domain of G-VDR.> Most recently, routes of total
chemical synthesis of 20(OH)D3 and some of its dihydroxy-
derivatives were established and the products show anti-
melanoma activity in in vitro assays.”’+%7

Although the physiological significance of short side-chain
A7-steroids and secosteroids is still not fully understood,
in vitro experiments showed that they have antiproliferative
activity in several cellular models, including human leuke-
mias, human epidermal keratinocytes and melanoma
cells, 0467117238276 anq also display antifibrotic activity.®®2%8
Importantly, vitamin D analogs with a shorter pD or aD side
chain possess proven or predicted low calcemic activity,?’”=279
confirmed further for 17,20S(OH),pD and 17,20R(OH),pD
compounds.®® The anti-melanoma activities of various
vitamin D analogs with a shortened side chain (pD and aD)
were recently reviewed.’»'®” pD and its precursor, 7DHP,
effectively attenuated the growth of human SKMEL-188 and
hamster AbC1 melanoma cell lines in soft agar.””?80 In
addition, several hydroxy derivatives of secosteroids with a
short side chain were produced by UVB irradiation of the
corresponding 5-7 dienes.®3¢4231.281 Tywo of the products, 21
(OH)pD and 3p,21-dihydroxy-94,10a-pregna-5,7-dien-20-
one (21(OH)pL), showed comparable potency to that of
1,25(0OH),D3 for the inhibition of growth of human
SKMEL-188 melanoma cells.®* In contrast to 1,25(0OH),D3
and 20(OH)D3, the short side-chain secosteroids 20(OH)pD
and pD had minimal or no effect on the proliferation of
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normal primary melanocytes,?3® with inhibition only seen for
the melanotic but not amelanotic immortalized human
melanocyte line (PIG1).>” Nevertheless, their anti-melanoma
efficacy was found to be lower in comparison to hydroxylated
analogs of vitamin Dj3 with a full-length side chain (25(OH)
D3, 20(0H)D3, 20,23(OH),D3 and 1,25(0H),D3).238
Furthermore, 20(OH)pD treatment of melanoma cells
resulted in inhibition of proliferation but not cell death,
while 1,25(0OH),D3 showed antiproliferative and cytotoxic
activities.??® Overall, short side-chain secosteroids, such as
pD, 21(OH)pD, 17a,20R(OH),pD and its lumisterol-like
isomer (17@,20S (OH),pL) were shown to inhibit colony
formation of SKMEL-188 melanoma cells in vitro with at least
equal potency to that of 1,25(0H),D3.9%¢* Also, 20(OH)pD
and its lumisterol-like isomer 20(OH)pL, as well as 21(OH)
pD, showed anti-melanoma activities against human SKMEL-
-188, hamster Ab and AbC1 melanoma lines and the mouse
B16-clone F10.5%4%7 Similarly, another steroidal derivative
with a 5,7-diene moiety, 17-COOH-7DA (3$-hydroxyan-
drosta-5,7-diene-17f-carboxylic acid), was found to be more
potent than 1,25(OH),D3 in inhibiting proliferation, colony
formation and DNA synthesis by human SKMEL-188,
WM35, WMI1341 and hamster AbCI melanoma cell
lines.”>! In addition, anti-melanoma activity of several pD
and aD secosteroids, including (5Z,7E)- 9,10-secoandrosta-
5,7,10(19)-trien-3$-0l  were confirmed by examining
anchorage-independent growth of SKMEL-188 melanoma
cells.?80

Recently, we speculated that a high concentration of
reactive oxygen species (ROS) produced during melanogen-
esis may have an impact on melanoma biology.?!! Interest-
ingly, the short side chain secosteroid, 21(OH)pD, similar to
1,25(0OH),D3, was found to aggravate the effect of the model
ROS molecule, H,0,, on human immortalized HaCaT
keratinocytes.’’® Induction of pigmentation in the
SKMEL-188 melanoma line sensitized cells towards treatment
with the short side chain lumisterol derivative, 21(OH)pL,
while the anti-melanoma potency of the parental compound,
21(OH)7DHP, and its vitamin D-like derivative 21(OH)pD,
was not affected by pigmentation.®® In addition, the
antiproliferative activities of pD and pL compounds were
affected by active melanogenesis in Ab hamster and B16-F10
mouse melanoma cells.®”

MELANOMA MANAGEMENT: WHAT IS NEW UNDER

THE SUN?

Targeting Retinoic Acid Orphan Receptors (RORs) in
Melanoma Therapy

Recent studies have demonstrated that certain hydroxylated
vitamin D derivatives can function as inverse agonists for
both RORa and RORy and as a consequence are able to
modulate the physiological and molecular processes regulated
by these receptors.”* This includes regulation of embryonic

development, several immune functions and circadian
rhythm, as well as lipid and glucose homeostasis.?8>283 In
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addition, RORs have been implicated in the control of several
pathologies, including several (auto)immune diseases, meta-
bolic syndrome, and cancer. The first link between loss of
RORy function and cancer was observed in RORy-deficient
mice, which develop thymic T-cell lymphomas that rapidly
metastasize to other tissues.”®* Subsequent studies showed
that RORa/y expression correlates inversely with tumorigen-
esis and positively with cancer survival outcomes.

We recently reported that there is an inverse correlation
between the level of RORa and RORy expression and
melanoma progression.”> These studies on a series of
melanoma biopsy specimens showed that the expression of
RORa and RORy decreased with melanoma progression being
lowest in most advanced melanomas (Breslow thickness
>2mm, Clark level >2, pT3-4, stages III-IV, cases that
developed metastases) and in melanoma metastases.’®> The
presence of markers of poor prognosis (ulceration, absent
TILs, nodular type, vertical growth phase) was accompanied
by the lowest RORa and RORy levels. In addition, RORa and
RORy expression was inversely correlated with high melanin
content, and this result was confirmed in melanoma cells with
inducible melanogenesis. Similarly to the VDR, CYP27B1 and
CYP24A1, and a lack of or low level of RORa or RORy
correlated to shorter overall and diseases-free survival.?8
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Figure 5 1,25(0H),D3 and other active forms of hydroxyvitamin D3 can
exert protective and anticancerogeneic effects by interaction with the
VDR and/or alternative nuclear or membrane bound receptors. In addition
to the classical pathway producing 1,25(0H),D3, activation of D3 via
combined action of CYP11A1, CYP27A1, CYP27A1 and CYP27B1 produce
several hydroxy derivatives that can interact with the VDR, RORa, RORy
and 125D3MARRS, depending on the ligand structure. 1,25(0H),D3 can
also interact with these receptors in addition to its action on the VDR.
ROR, retinoic acid orphan receptor; VDR, vitamin D receptor.
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The above observations are consistent with reports on the
level of RORa/y expression in several other cancers, including
breast cancer, non-small cell lung carcinoma, and hepatocel-
lular carcinoma and studies showing a positive association
with prognosis.?86=2°0 These antitumor effects of RORs have
contributed to decreased cell proliferation as well as
inhibition of the EMT.28628%291 The inverse correlation
between RORa/y expression and tumorigenesis suggests that
agonists might inhibit tumor growth and progression and
provide a promising new strategy for anticancer therapy.

A recent study showed that growth of melanoma cells is
considerably reduced in RORy-deficient bone marrow
chimeric mice.?®> Deficiency in RORy leads to decreased
Th17 differentiation and IL-17 levels, but increased IL-9
production.?>=2%> This suppression of tumor growth in this
model has been attributed to increased expression of IL-9,
which has been reported to promote antitumor immunity.?*®
In this case, inverse agonists/antagonists, such as hydroxylated
vitamin D derivatives, might inhibit tumor growth and
progression by promoting antitumor immunity and provide
an alternative therapeutic strategy. However, ROR antago-
nists, by acting directly on tumor cells, might potentially
promote tumor progression by repressing ROR activity.
Inversely, ROR agonists might inhibit tumor growth,
however, they may reduce antitumor immunity.

Potential use of Novel Nocalcemic Derivatives of
Vitamin D

Despite anti-melanoma activities of 1,25(OH),D3 described
above, a major barrier for its use at pharmacological doses is
its toxicity secondary to calcemic activity.>%0%71:127:297
Although there are more than 3000 chemically synthesized
analogs of D3 with low-calcemic effects that target VDR, none
of them have entered clinical or preclinical trials in
melanoma, and none of them has entered the clinic as a
general anticancer drug. A possible limitation on man-made
analogs could relate to their relative toxicity vs the optimal
antitumor serum concentrations necessary for anticancer
activity, their relative resistance to metabolism and high target
selectivity. In contrast, D3 of either cutaneous or nutritional
source can be metabolized in vivo to a large number of
hydroxy derivatives with multiple regulatory targets,
potentially resulting in protective and anticancer effects
(Figures 1 and 5).

In this context, intermediates and products of an
alternative pathway of D3 metabolism initiated by CYP11A1
and producing 20(OH)D3 as the major product as well as
other hydroxy derivatives (OH),D3, represent attractive
alternatives for D3-based anti-melanoma therapy.>>17>2%8 It
should be noted that these metabolites are detectable in the
human body, with 20(OH)D3 being present in human serum
in the nM range.**>>> The CYP11Al-derived secosteroids
also display biological potency equal to or higher than
that of classical 1,25(OH),D3, with antiproliferative,
antitumor, and anti-inflammatory activities on melanoma
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cells.3967:94118,120.272 The presence of CYP11Al-derived
hydroxymetabolites in the human serum suggests that
they have hormonal function. Furthermore, 20(OH)D3 is
noncalcemic and nontoxic at pharmacological doses
(3060 pg/kg), which are > 100 times higher than toxic doses
of 1,25(0OH),D3 or its precursor, 25(0OH)D3.117:268:272 These
novel vitamin D hydroxy derivatives could be used as an
adjuvant (supplement) to already established melanoma
therapies, because of their low toxicity and endogenous
origin. Their local metabolism may actually increase their
anti-melanoma potency,’® with an increased spectrum of
regulatory targets (Figure 5). Finally, secosteroids with a short
side chain may also serve as excellent candidates for adjuvants
in melanoma therapy, because they also lack calcemic activity
and some of them are of endogenous origin.6%:6466:67,238.279
One caveat on short side chain secosteroids is their immediate
target (receptor) for bioregulation is unclear.!%-30:238

Vitamin D as an Adjuvant in Melanoma Management: An
Australian Clinical Trial

In view of the observed relationship between vitamin D status
and Breslow thickness and outcomes in melanoma
patients,!04177:178.299 the next question is whether supple-
mentation with vitamin D at an early stage after diagnosis is
safe and improves outcomes in patients with melanoma.
Randomized clinical trials to examine these questions are now
underway in Belgium, Italy and Australia, though none have
reported outcomes as yet. ‘Vitamin D supplementation in
cutaneous malignant melanoma outcome;’ (VIDMe), Clinical
Trials.gov Identifier NCT01748448), is a Phase 3 RCT based
in Belgium. Melanoma patients, stage Ib to III, will be given
oral vitamin D, 100000 IU per month or placebo, for a
maximum of 3.5 years or until relapse occurs. The primary
outcome is relapse-free survival. The MelaViD trial in
Italy*® is an RCT, with resected stage IT melanoma patients
randomized to 100000 IU every 50 days or so (approx.
2000 IU/day). The primary outcome is disease-free survival.
The Mel-D trial, a phase II RCT conducted by the Australia
and New Zealand Melanoma Trials Group,*®' involves
randomization of 75 patients with stage IIb, ¢ or stage IIla,
b melanoma within 9 weeks of wide excision of the primary,
in a ratio of 2:1 to active treatment or placebo. These patients
are at high risk of recurrence. Active treatment is an oral
loading dose of 500 000 IU of vitamin D3 followed by an oral
dose of 50 000 IU monthly for 2 years. The aim of the loading
dose is to rapidly increase serum 25(OH)D concentrations as
early as possible in these patients, to mimic, as far as possible,
the effect of high vitamin D status at diagnosis. Primary
outcomes are dose sufficiency, adherence to medication and
safety, with secondary outcome of progression-free survival.
To date, there have been few safety concerns, despite the large
loading dose.
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CONCLUDING REMARKS AND PERSPECTIVE

In summary, it is becoming unquestionable that defects in
vitamin D signaling that include systemic or local defects in
vitamin D activation and inactivation, and in expression and
signaling through the corresponding receptors, can affect
melanomagenesis, tumor progression, and outcome of the
disease (Figure 1). It should also be emphasized that there is
more than one form of active vitamin D besides 1,25(0OH),D3)
and more than one receptor target besides the VDR, which can
potentially affect the behavior of melanoma cells and the
outcome of the disease or its therapy (Figure 5). From an
anatomic pathology point of view, changes in the expression of
VDR, CYP27B1, CYP24A1, or RORs could serve as promising
markers of melanoma prognosis, or as excellent reference
points when considering vitamin D therapy or pharmacological
targeting of the VDR or RORs in melanoma patients. With
respect to prevention, testing for SNPs in VDR and perhaps in
RORs, CYP27B1 and CYP24Al, may identify subgroups of
patients that are at particular risk of developing melanoma. In
terms of clinical pathology, measurement of serum 25(OH)D3
and other D3 metabolites including CYP11Al-derived
hydroxy derivatives, should represent standard practice since
vitamin D deficiency may affect progression of the disease.
While it has to be acknowledged that the use of chemically
synthesized vitamin D analogs targeting the VDR has not
been successful in cancer therapy to date, nutritional and
perhaps parenteral application of vitamin D may represent an
excellent adjuvant strategy in cancer management, including
melanoma. Furthermore, the discovery of new active hydroxy
derivatives of vitamin D that are noncalcemic and produced in
the human body may represent a dawn for their use in cancer
management.

In conclusion, while UVB wavelengths of solar radiation
can serve as an etiological factor in melanomagenesis, it
must be acknowledged that it is also necessary for vitamin D
formation that can not only act as a protector against UVR,
but also has a role in attenuating carcinogenesis and tumor
progression.
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