Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

The molecular characterization and clinical management of multiple myeloma in the post-genome era

Abstract

Cancer-causing mutations disrupt coordinated, precise programs of gene expression that govern cell growth and differentiation. Microarray-based gene-expression profiling (GEP) is a powerful tool to globally analyze these changes to study cancer biology and clinical behavior. Despite overwhelming genomic chaos in multiple myeloma (MM), expression patterns within tumor samples are remarkably stable and reproducible. Unique expression patterns associated with recurrent chromosomal translocations and ploidy changes defined molecular classes with differing clinical features and outcomes. Combined molecular techniques also dissected two distinct, reproducible forms of hyperdiploid disease and have molecularly defined MM with high risk for poor clinical outcome. GEP is now used to risk-stratify patients with newly diagnosed MM. Groups with high-risk features are evident in all GEP-defined MM classes, and GEP studies of serial samples showed that risk increases over time, with relapsed disease showing dramatic GEP shifts toward a signature of poor outcomes. This suggests a common mechanism of disease evolution and potentially reflects preferential expansion of therapy-resistant cells. Correlating GEP-defined disease class and risk with outcomes of therapeutic regimens reveals class–specific benefits for individual agents, as well as mechanistic insights into drug sensitivity and resistance. Here, we review modern genomics contributions to understanding MM pathogenesis, prognosis, and therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Barlogie B, Shaughnessy J, Epstein J, Sanderson R, Anaissie E, Walker R et al. Plasma cell myeloma. In: Lichtman MA, Beutler E, Kaushansky K, Kipps TJ, Seligsohn U, Prchal J (eds). Williams Hematology, 7 edn. McGraw-Hill Professional: New York, 2005, pp 1501–1533.

    Google Scholar 

  2. Ribatti D, Nico B, Vacca A . Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene 2006; 25: 4257–4266.

    Article  CAS  PubMed  Google Scholar 

  3. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–511.

    Article  CAS  PubMed  Google Scholar 

  4. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002; 8: 68–74.

    Article  CAS  PubMed  Google Scholar 

  5. Rosenwald A, Wright G, Wiestner A, Chan WC, Connors JM, Campo E et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 2003; 3: 185–197.

    Article  CAS  PubMed  Google Scholar 

  6. Ross ME, Zhou X, Song G, Shurtleff SA, Girtman K, Williams WK et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 2003; 102: 2951–2959.

    Article  CAS  PubMed  Google Scholar 

  7. Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004; 350: 1605–1616.

    Article  CAS  PubMed  Google Scholar 

  8. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  PubMed  Google Scholar 

  9. Lossos IS, Czerwinski DK, Alizadeh AA, Wechser MA, Tibshirani R, Botstein D et al. Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N Engl J Med 2004; 350: 1828–1837.

    Article  CAS  PubMed  Google Scholar 

  10. Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 2004; 351: 2159–2169.

    Article  CAS  PubMed  Google Scholar 

  11. Dave SS, Fu K, Wright GW, Lam LT, Kluin P, Boerma EJ et al. Molecular diagnosis of Burkitt′s lymphoma. N Engl J Med 2006; 354: 2431–2442.

    Article  CAS  PubMed  Google Scholar 

  12. Tricot G, Barlogie B, Jagannath S, Bracy D, Mattox S, Vesole DH et al. Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood 1995; 86: 4250–4256.

    CAS  PubMed  Google Scholar 

  13. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  14. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al. The sequence of the human genome. Science (New York, NY) 2001; 291: 1304–1351.

    Article  CAS  Google Scholar 

  15. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860–921.

    Article  CAS  PubMed  Google Scholar 

  16. Schena M, Shalon D, Davis RW, Brown PO . Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science (New York, NY) 1995; 270: 467–470.

    Article  CAS  Google Scholar 

  17. Shalon D, Smith SJ, Brown PO . A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res 1996; 6: 639–645.

    Article  CAS  PubMed  Google Scholar 

  18. Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW . Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci USA 1996; 93: 10614–10619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D . Light-directed, spatially addressable parallel chemical synthesis. Science (New York, NY) 1991; 251: 767–773.

    Article  CAS  Google Scholar 

  20. Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ . High density synthetic oligonucleotide arrays. Nat Genet 1999; 21 (1 Suppl): 20–24.

    Article  CAS  PubMed  Google Scholar 

  21. Quackenbush J . Microarray analysis and tumor classification. N Engl J Med 2006; 354: 2463–2472.

    Article  CAS  PubMed  Google Scholar 

  22. DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 1996; 14: 457–460.

    Article  CAS  PubMed  Google Scholar 

  23. De Vos J, Couderc G, Tarte K, Jourdan M, Requirand G, Delteil MC et al. Identifying intercellular signaling genes expressed in malignant plasma cells by using complementary DNA arrays. Blood 2001; 98: 771–780.

    Article  CAS  PubMed  Google Scholar 

  24. Claudio JO, Masih-Khan E, Tang H, Goncalves J, Voralia M, Li ZH et al. A molecular compendium of genes expressed in multiple myeloma. Blood 2002; 100: 2175–2186.

    Article  CAS  PubMed  Google Scholar 

  25. Zhan F, Hardin J, Kordsmeier B, Bumm K, Zheng M, Tian E et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 2002; 99: 1745–1757.

    Article  CAS  PubMed  Google Scholar 

  26. Zhan F, Tian E, Bumm K, Smith R, Barlogie B, Shaughnessy Jr J . Gene expression profiling of human plasma cell differentiation and classification of multiple myeloma based on similarities to distinct stages of late-stage B-cell development. Blood 2003; 101: 1128–1140.

    Article  CAS  PubMed  Google Scholar 

  27. Tarte K, De Vos J, Thykjaer T, Zhan F, Fiol G, Costes V et al. Generation of polyclonal plasmablasts from peripheral blood B cells: a normal counterpart of malignant plasmablasts. Blood 2002; 100: 1113–1122.

    CAS  PubMed  Google Scholar 

  28. Tarte K, Zhan F, De Vos J, Klein B, Shaughnessy Jr J . Gene expression profiling of plasma cells and plasmablasts: toward a better understanding of the late stages of B-cell differentiation. Blood 2003; 102: 592–600.

    Article  CAS  PubMed  Google Scholar 

  29. Bergsagel PL, Kuehl WM . Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol 2005; 23: 6333–6338.

    Article  CAS  PubMed  Google Scholar 

  30. Mattioli M, Agnelli L, Fabris S, Baldini L, Morabito F, Bicciato S et al. Gene expression profiling of plasma cell dyscrasias reveals molecular patterns associated with distinct IGH translocations in multiple myeloma. Oncogene 2005; 24: 2461–2473.

    Article  CAS  PubMed  Google Scholar 

  31. Jourdan M, Reme T, Goldschmidt H, Fiol G, Pantesco V, De Vos J et al. Gene expression of anti- and pro-apoptotic proteins in malignant and normal plasma cells. Br J Haematol 2009; 145: 45–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dalton WS . The tumor microenvironment: focus on myeloma. Cancer Treat Rev 2003; 29 (Suppl 1): 11–19.

    Article  CAS  PubMed  Google Scholar 

  33. Corre J, Mahtouk K, Attal M, Gadelorge M, Huynh A, Fleury-Cappellesso S et al. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 2007; 21: 1079–1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Perez-Andres M, Almeida J, Martin-Ayuso M, Moro MJ, Martin-Nunez G, Galende J et al. Clonal plasma cells from monoclonal gammopathy of undetermined significance, multiple myeloma and plasma cell leukemia show different expression profiles of molecules involved in the interaction with the immunological bone marrow microenvironment. Leukemia 2005; 19: 449–455.

    Article  CAS  PubMed  Google Scholar 

  35. Mundy GR . Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev 2002; 2: 584–593.

    Article  CAS  Google Scholar 

  36. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003; 349: 2483–2494.

    Article  CAS  PubMed  Google Scholar 

  37. Pinzone JJ, Hall BM, Thudi NK, Vonau M, Qiang YW, Rosol TJ et al. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood 2009; 113: 517–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jakob C, Sterz J, Zavrski I, Heider U, Kleeberg L, Fleissner C et al. Angiogenesis in multiple myeloma. Eur J Cancer 2006; 42: 1581–1590.

    Article  CAS  PubMed  Google Scholar 

  39. Kumar S, Gertz MA, Dispenzieri A, Lacy MQ, Wellik LA, Fonseca R et al. Prognostic value of bone marrow angiogenesis in patients with multiple myeloma undergoing high-dose therapy. Bone Marrow Transplant 2004; 34: 235–239.

    Article  CAS  PubMed  Google Scholar 

  40. Vacca A, Scavelli C, Montefusco V, Di Pietro G, Neri A, Mattioli M et al. Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J Clin Oncol 2005; 23: 5334–5346.

    Article  CAS  PubMed  Google Scholar 

  41. Hedvat CV, Comenzo RL, Teruya-Feldstein J, Olshen AB, Ely SA, Osman K et al. Insights into extramedullary tumour cell growth revealed by expression profiling of human plasmacytomas and multiple myeloma. Br J Haematol 2003; 122: 728–744.

    Article  CAS  PubMed  Google Scholar 

  42. Munshi NC, Hideshima T, Carrasco D, Shammas M, Auclair D, Davies F et al. Identification of genes modulated in multiple myeloma using genetically identical twin samples. Blood 2004; 103: 1799–1806.

    Article  CAS  PubMed  Google Scholar 

  43. Hose D, Moreaux J, Meissner T, Seckinger A, Goldschmidt H, Benner A et al. Induction of angiogenesis by normal and malignant plasma cells. Blood 2009; 114: 128–143.

    Article  CAS  PubMed  Google Scholar 

  44. Reiland J, Sanderson RD, Waguespack M, Barker SA, Long R, Carson DD et al. Heparanase degrades syndecan-1 and perlecan heparan sulfate: functional implications for tumor cell invasion. J Biol Chem 2004; 279: 8047–8055.

    Article  CAS  PubMed  Google Scholar 

  45. Kelly T, Miao HQ, Yang Y, Navarro E, Kussie P, Huang Y et al. High heparanase activity in multiple myeloma is associated with elevated microvessel density. Cancer Res 2003; 63: 8749–8756.

    CAS  PubMed  Google Scholar 

  46. Mahtouk K, Hose D, Raynaud P, Hundemer M, Jourdan M, Jourdan E et al. Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma. Blood 2007; 109: 4914–4923.

    Article  CAS  PubMed  Google Scholar 

  47. Bret C, Hose D, Reme T, Sprynski AC, Mahtouk K, Schved JF et al. Expression of genes encoding for proteins involved in heparan sulphate and chondroitin sulphate chain synthesis and modification in normal and malignant plasma cells. Br J Haematol 2009; 145: 350–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mahtouk K, Cremer FW, Reme T, Jourdan M, Baudard M, Moreaux J et al. Heparan sulphate proteoglycans are essential for the myeloma cell growth activity of EGF-family ligands in multiple myeloma. Oncogene 2006; 25: 7180–7191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moreaux J, Legouffe E, Jourdan E, Quittet P, Reme T, Lugagne C et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 2004; 103: 3148–3157.

    Article  CAS  PubMed  Google Scholar 

  50. Novak AJ, Darce JR, Arendt BK, Harder B, Henderson K, Kindsvogel W et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood 2004; 103: 689–694.

    Article  CAS  PubMed  Google Scholar 

  51. Moreaux J, Cremer FW, Reme T, Raab M, Mahtouk K, Kaukel P et al. The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 2005; 106: 1021–1030.

    Article  CAS  PubMed  Google Scholar 

  52. Ge Y, Zhan F, Barlogie B, Epstein J, Shaughnessy Jr J, Yaccoby S . Fibroblast activation protein (FAP) is upregulated in myelomatous bone and supports myeloma cell survival. Br J Haematol 2006; 133: 83–92.

    Article  CAS  PubMed  Google Scholar 

  53. Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy Jr J . Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 2005; 106: 296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chesi M, Bergsagel PL, Brents LA, Smith CM, Gerhard DS, Kuehl WM . Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood 1996; 88: 674–681.

    CAS  PubMed  Google Scholar 

  55. Shaughnessy Jr J, Gabrea A, Qi Y, Brents L, Zhan F, Tian E et al. Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood 2001; 98: 217–223.

    Article  CAS  PubMed  Google Scholar 

  56. Hurt EM, Wiestner A, Rosenwald A, Shaffer AL, Campo E, Grogan T et al. Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell 2004; 5: 191–199.

    Article  CAS  PubMed  Google Scholar 

  57. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S et al. The molecular classification of multiple myeloma. Blood 2006; 108: 2020–2028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hanamura I, Huang Y, Zhan F, Barlogie B, Shaughnessy J . Prognostic value of cyclin D2 mRNA expression in newly diagnosed multiple myeloma treated with high-dose chemotherapy and tandem autologous stem cell transplantations. Leukemia 2006; 20: 1288–1290.

    Article  CAS  PubMed  Google Scholar 

  59. Agnelli L, Bicciato S, Mattioli M, Fabris S, Intini D, Verdelli D et al. Molecular classification of multiple myeloma: a distinct transcriptional profile characterizes patients expressing CCND1 and negative for 14q32 translocations. J Clin Oncol 2005; 23: 7296–7306.

    Article  CAS  PubMed  Google Scholar 

  60. Kuehl WM, Bergsagel PL . Multiple myeloma: evolving genetic events and host interactions. Nat Rev 2002; 2: 175–187.

    Article  CAS  Google Scholar 

  61. Keats JJ, Reiman T, Maxwell CA, Taylor BJ, Larratt LM, Mant MJ et al. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 2003; 101: 1520–1529.

    Article  CAS  PubMed  Google Scholar 

  62. Chesi M, Nardini E, Lim RS, Smith KD, Kuehl WM, Bergsagel PL . The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 1998; 92: 3025–3034.

    CAS  PubMed  Google Scholar 

  63. Santra M, Zhan F, Tian E, Barlogie B, Shaughnessy Jr J . A subset of multiple myeloma harboring the t(4;14)(p16;q32) translocation lacks FGFR3 expression but maintains an IGH/MMSET fusion transcript. Blood 2003; 101: 2374–2376.

    Article  CAS  PubMed  Google Scholar 

  64. Dring AM, Davies FE, Fenton JA, Roddam PL, Scott K, Gonzalez D et al. A global expression-based analysis of the consequences of the t(4;14) translocation in myeloma. Clin Cancer Res 2004; 10: 5692–5701.

    Article  CAS  PubMed  Google Scholar 

  65. Brito JL, Walker B, Jenner M, Dickens NJ, Brown NJ, Ross FM et al. MMSET deregulation affects cell cycle progression and adhesion regulons in t(4;14) myeloma plasma cells. Haematologica 2009; 94: 78–86.

    Article  CAS  PubMed  Google Scholar 

  66. Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007; 12: 115–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. van Stralen E, van de Wetering M, Agnelli L, Neri A, Clevers HC, Bast BJ . Identification of primary MAFB target genes in multiple myeloma. Exp Hematol 2009; 37: 78–86.

    Article  CAS  PubMed  Google Scholar 

  68. Suzuki A, Iida S, Kato-Uranishi M, Tajima E, Zhan F, Hanamura I et al. ARK5 is transcriptionally regulated by the large-MAF family and mediates IGF-1-induced cell invasion in multiple myeloma: ARK5 as a new molecular determinant of malignant multiple myeloma. Oncogene 2005; 24: 6936–6944.

    Article  CAS  PubMed  Google Scholar 

  69. Tusher VG, Tibshirani R, Chu G . Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116–5121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tai YT, Soydan E, Song W, Fulciniti M, Kim K, Hong F et al. CS1 promotes multiple myeloma cell adhesion, clonogenic growth, and tumorigenicity via c-maf-mediated interactions with bone marrow stromal cells. Blood 2009; 113: 4309–4318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tai YT, Dillon M, Song W, Leiba M, Li XF, Burger P et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 2008; 112: 1329–1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lin P, Mahdavy M, Zhan F, Zhang HZ, Katz RL, Shaughnessy JD . Expression of PAX5 in CD20-positive multiple myeloma assessed by immunohistochemistry and oligonucleotide microarray. Mod Pathol 2004; 17: 1217–1222.

    Article  CAS  PubMed  Google Scholar 

  73. Shaughnessy Jr JD, Zhan F, Burington BE, Huang Y, Colla S, Hanamura I et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 2007; 109: 2276–2284.

    Article  CAS  PubMed  Google Scholar 

  74. Carrasco DR, Tonon G, Huang Y, Zhang Y, Sinha R, Feng B et al. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell 2006; 9: 313–325.

    Article  CAS  PubMed  Google Scholar 

  75. Bartel TB, Haessler J, Brown TL, Shaughnessy Jr JD, van Rhee F, Anaissie E et al. F18–fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood 2009 (in press).

  76. Yin JJ, Mohammad KS, Kakonen SM, Harris S, Wu-Wong JR, Wessale JL et al. A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc Natl Acad Sci USA 2003; 100: 10954–10959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Clines GA, Mohammad KS, Bao Y, Stephens OW, Suva LJ, Shaughnessy Jr JD et al. Dickkopf homolog 1 mediates endothelin-1-stimulated new bone formation. Mol Endocrinol (Baltimore, Md) 2007; 21: 486–498.

    Article  CAS  Google Scholar 

  78. Agnelli L, Fabris S, Bicciato S, Basso D, Baldini L, Morabito F et al. Upregulation of translational machinery and distinct genetic subgroups characterise hyperdiploidy in multiple myeloma. Br J Haematol 2007; 136: 565–573.

    Article  CAS  PubMed  Google Scholar 

  79. Chng WJ, Kumar S, Vanwier S, Ahmann G, Price-Troska T, Henderson K et al. Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling. Cancer Res 2007; 67: 2982–2989.

    Article  CAS  PubMed  Google Scholar 

  80. Zhou Y, Barlogie B, Herman D, Stephens O, Tian E, Williams D et al. Integration of DNA copy number and gene expression alteration reveal novel insights into the molecular pathogenesis and prognosis of multiple myeloma. Blood (ASH Annual Meeting Abstracts) 2008; 12: 250.

    Google Scholar 

  81. Shaughnessy J, Jacobson J, Sawyer J, McCoy J, Fassas A, Zhan F et al. Continuous absence of metaphase-defined cytogenetic abnormalities, especially of chromosome 13 and hypodiploidy, ensures long-term survival in multiple myeloma treated with total therapy I: interpretation in the context of global gene expression. Blood 2003; 101: 3849–3856.

    Article  CAS  PubMed  Google Scholar 

  82. Agnelli L, Bicciato S, Fabris S, Baldini L, Morabito F, Intini D et al. Integrative genomic analysis reveals distinct transcriptional and genetic features associated with chromosome 13 deletion in multiple myeloma. Haematologica 2007; 92: 56–65.

    Article  CAS  PubMed  Google Scholar 

  83. Hanamura I, Stewart JP, Huang Y, Zhan F, Santra M, Sawyer JR et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 2006; 108: 1724–1732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rosinol L, Carrio A, Blade J, Queralt R, Aymerich M, Cibeira MT et al. Comparative genomic hybridisation identifies two variants of smoldering multiple myeloma. Br J Haematol 2005; 130: 729–732.

    Article  CAS  PubMed  Google Scholar 

  85. Fabris S, Ronchetti D, Agnelli L, Baldini L, Morabito F, Bicciato S et al. Transcriptional features of multiple myeloma patients with chromosome 1q gain. Leukemia 2007; 21: 1113–1116.

    Article  CAS  PubMed  Google Scholar 

  86. Agnelli L, Mosca L, Fabris S, Lionetti M, Andronache A, Kwee I et al. A SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide gene dosage effect. Genes Chromosomes Cancer 2009; 48: 603–614.

    Article  CAS  PubMed  Google Scholar 

  87. Carew JS, Nawrocki ST, Krupnik YV, Dunner Jr K, McConkey DJ, Keating MJ et al. Targeting endoplasmic reticulum protein transport: a novel strategy to kill malignant B cells and overcome fludarabine resistance in CLL. Blood 2006; 107: 222–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chng WJ, Price-Troska T, Gonzalez-Paz N, Van Wier S, Jacobus S, Blood E et al. Clinical significance of TP53 mutation in myeloma. Leukemia 2007; 21: 582–584.

    Article  CAS  PubMed  Google Scholar 

  89. Xiong W, Wu X, Starnes S, Johnson SK, Haessler J, Wang S et al. An analysis of the clinical and biological significance of TP53 loss and the identification of potential novel transcriptional targets of TP53 in multiple myeloma. Blood 2008; 112: 4235–4246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cigudosa JC, Rao PH, Calasanz MJ, Odero MD, Michaeli J, Jhanwar SC et al. Characterization of nonrandom chromosomal gains and losses in multiple myeloma by comparative genomic hybridization. Blood 1998; 91: 3007–3010.

    CAS  PubMed  Google Scholar 

  91. Gutierrez NC, Garcia JL, Hernandez JM, Lumbreras E, Castellanos M, Rasillo A et al. Prognostic and biologic significance of chromosomal imbalances assessed by comparative genomic hybridization in multiple myeloma. Blood 2004; 104: 2661–2666.

    Article  CAS  PubMed  Google Scholar 

  92. Avet-Loiseau H, Andree-Ashley LE, Moore II D, Mellerin MP, Feusner J, Bataille R et al. Molecular cytogenetic abnormalities in multiple myeloma and plasma cell leukemia measured using comparative genomic hybridization. Genes Chromosomes Cancer 1997; 19: 124–133.

    Article  CAS  PubMed  Google Scholar 

  93. Houldsworth J, Chaganti RS . Comparative genomic hybridization: an overview. Am J Pathol 1994; 145: 1253–1260.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Barrett MT, Scheffer A, Ben-Dor A, Sampas N, Lipson D, Kincaid R et al. Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc Natl Acad Sci USA 2004; 101: 17765–17770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 1999; 23: 41–46.

    Article  CAS  PubMed  Google Scholar 

  96. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998; 20: 207–211.

    Article  CAS  PubMed  Google Scholar 

  97. Fabris S, Todoerti K, Mosca L, Agnelli L, Intini D, Lionetti M et al. Molecular and transcriptional characterization of the novel 17p11.2-p12 amplicon in multiple myeloma. Genes Chromosomes Cancer 2007; 46: 1109–1118.

    Article  CAS  PubMed  Google Scholar 

  98. Jenner MW, Leone PE, Walker BA, Ross FM, Johnson DC, Gonzalez D et al. Gene mapping and expression analysis of 16q loss of heterozygosity identifies WWOX and CYLD as being important in determining clinical outcome in multiple myeloma. Blood 2007; 110: 3291–3300.

    Article  CAS  PubMed  Google Scholar 

  99. Salmon SE, Durie BG . Clinical staging and new therapeutic approaches in multiple myeloma. Recent Results Cancer Res 1978; 65: 12–20.

    Article  CAS  PubMed  Google Scholar 

  100. Greipp PR, San Miguel J, Durie BG, Crowley JJ, Barlogie B, Blade J et al. International staging system for multiple myeloma. J Clin Oncol 2005; 23: 3412–3420.

    Article  PubMed  Google Scholar 

  101. Bartl R . Histologic classification and staging of multiple myeloma. Hematol Oncol 1988; 6: 107–113.

    Article  CAS  PubMed  Google Scholar 

  102. Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesi M et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 2004; 64: 1546–1558.

    Article  CAS  PubMed  Google Scholar 

  103. Greipp PR, Kumar S . Plasma cell labeling index. Methods Mol Med 2005; 113: 25–35.

    PubMed  Google Scholar 

  104. Paiva B, Vidriales MB, Cervero J, Mateo G, Perez JJ, Montalban MA et al. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood 2008; 112: 4017–4023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mulligan G, Mitsiades C, Bryant B, Zhan F, Chng WJ, Roels S et al. Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib. Blood 2007; 109: 3177–3188.

    Article  CAS  PubMed  Google Scholar 

  106. Zhan F, Barlogie B, Mulligan G, Shaughnessy Jr JD, Bryant B . High-risk myeloma: a gene expression based risk-stratification model for newly diagnosed multiple myeloma treated with high-dose therapy is predictive of outcome in relapsed disease treated with single-agent bortezomib or high-dose dexamethasone. Blood 2008; 111: 968–969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chng WJ, Kuehl WM, Bergsagel PL, Fonseca R . Translocation t(4;14) retains prognostic significance even in the setting of high-risk molecular signature. Leukemia 2008; 22: 459–461.

    Article  CAS  PubMed  Google Scholar 

  108. Nair B, Shaughnessy Jr JD, Zhou Y, Astrid-Cartron M, Qu P, van Rhee F et al. Gene expression profiling of plasma cells at myeloma relapse from total therapy 2 predicts subsequent survival. Blood 2009; 113: 6572–6575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Decaux O, Lode L, Magrangeas F, Charbonnel C, Gouraud W, Jezequel P et al. Prediction of survival in multiple myeloma based on gene expression profiles reveals cell cycle and chromosomal instability signatures in high-risk patients and hyperdiploid signatures in low-risk patients: a study of the intergroupe francophone du myelome. J Clin Oncol 2008; 26: 4798–4805.

    Article  CAS  PubMed  Google Scholar 

  110. Chng WJ, Ahmann GJ, Henderson K, Santana-Davila R, Greipp PR, Gertz MA et al. Clinical implication of centrosome amplification in plasma cell neoplasm. Blood 2006; 107: 3669–3675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chng WJ, Braggio E, Mulligan G, Bryant B, Remstein E, Valdez R et al. The centrosome index is a powerful prognostic marker in myeloma and identifies a cohort of patients that might benefit from aurora kinase inhibition. Blood 2008; 111: 1603–1609.

    Article  CAS  PubMed  Google Scholar 

  112. Moreaux J, Hose D, Reme T, Jourdan E, Hundemer M, Legouffe E et al. CD200 is a new prognostic factor in multiple myeloma. Blood 2006; 108: 4194–4197.

    Article  CAS  PubMed  Google Scholar 

  113. Gorczynski RM, Lee L, Boudakov I . Augmented Induction of CD4+CD25+ Treg using monoclonal antibodies to CD200R. Transplantation 2005; 79: 1180–1183.

    Article  CAS  PubMed  Google Scholar 

  114. Condomines M, Hose D, Raynaud P, Hundemer M, De Vos J, Baudard M et al. Cancer/testis genes in multiple myeloma: expression patterns and prognosis value determined by microarray analysis. J Immunol 2007; 178: 3307–3315.

    Article  CAS  PubMed  Google Scholar 

  115. Andrade VC, Vettore AL, Regis Silva MR, Felix RS, Almeida MS, de Carvalho F et al. Frequency and prognostic relevance of cancer testis antigen 45 expression in multiple myeloma. Exp Hematol 2009; 37: 446–449.

    Article  CAS  PubMed  Google Scholar 

  116. Atanackovic D, Luetkens T, Hildebrandt Y, Arfsten J, Bartels K, Horn C et al. Longitudinal analysis and prognostic effect of cancer-testis antigen expression in multiple myeloma. Clin Cancer Res 2009; 15: 1343–1352.

    Article  CAS  PubMed  Google Scholar 

  117. van Rhee F, Szmania SM, Zhan F, Gupta SK, Pomtree M, Lin P et al. NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses. Blood 2005; 105: 3939–3944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Akiyama M et al. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 2004; 5: 221–230.

    Article  CAS  PubMed  Google Scholar 

  119. Sabbatini P, Rowand JL, Groy A, Korenchuk S, Liu Q, Atkins C et al. Antitumor activity of GSK1904529A, a small-molecule inhibitor of the insulin-like growth factor-I receptor tyrosine kinase. Clin Cancer Res 2009; 15: 3058–3067.

    Article  CAS  PubMed  Google Scholar 

  120. Sprynski AC, Hose D, Caillot L, Reme T, Shaughnessy J, Barlogie B et al. The role of IGF-1 as a major growth factor for myeloma cell lines and the prognostic relevance of the expression of its receptor. Blood 2009; 113: 4614–4626.

    Article  CAS  PubMed  Google Scholar 

  121. Marton MJ, DeRisi JL, Bennett HA, Iyer VR, Meyer MR, Roberts CJ et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat Med 1998; 4: 1293–1301.

    Article  CAS  PubMed  Google Scholar 

  122. Gray NS, Wodicka L, Thunnissen AM, Norman TC, Kwon S, Espinoza FH et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science (New York, NY) 1998; 281: 533–538.

    Article  CAS  Google Scholar 

  123. Cheok MH, Yang W, Pui CH, Downing JR, Cheng C, Naeve CW et al. Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nat Genet 2003; 34: 85–90.

    Article  CAS  PubMed  Google Scholar 

  124. Chauhan D, Auclair D, Robinson EK, Hideshima T, Li G, Podar K et al. Identification of genes regulated by dexamethasone in multiple myeloma cells using oligonucleotide arrays. Oncogene 2002; 21: 1346–1358.

    Article  CAS  PubMed  Google Scholar 

  125. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 2002; 99: 14374–14379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mitsiades N, Mitsiades CS, Richardson PG, Poulaki V, Tai YT, Chauhan D et al. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 2003; 101: 2377–2380.

    Article  CAS  PubMed  Google Scholar 

  127. Chauhan D, Li G, Auclair D, Hideshima T, Richardson P, Podar K et al. Identification of genes regulated by 2-methoxyestradiol (2ME2) in multiple myeloma cells using oligonucleotide arrays. Blood 2003; 101: 3606–3614.

    Article  CAS  PubMed  Google Scholar 

  128. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Hideshima T et al. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 2004; 101: 540–545.

    Article  CAS  PubMed  Google Scholar 

  129. Neri P, Tagliaferri P, Di Martino MT, Calimeri T, Amodio N, Bulotta A et al. In vivo anti-myeloma activity and modulation of gene expression profile induced by valproic acid, a histone deacetylase inhibitor. Br J Haematol 2008; 143: 520–531.

    CAS  PubMed  Google Scholar 

  130. Tassone P, Neri P, Burger R, Savino R, Shammas M, Catley L et al. Combination therapy with interleukin-6 receptor superantagonist Sant7 and dexamethasone induces antitumor effects in a novel SCID-hu in vivo model of human multiple myeloma. Clin Cancer Res 2005; 11: 4251–4258.

    Article  CAS  PubMed  Google Scholar 

  131. Sukhdeo K, Mani M, Zhang Y, Dutta J, Yasui H, Rooney MD et al. Targeting the beta-catenin/TCF transcriptional complex in the treatment of multiple myeloma. Proc Natl Acad Sci USA 2007; 104: 7516–7521.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Raje N, Kumar S, Hideshima T, Ishitsuka K, Yasui H, Chhetri S et al. Didox, a ribonucleotide reductase inhibitor, induces apoptosis and inhibits DNA repair in multiple myeloma cells. Br J Haematol 2006; 135: 52–61.

    Article  CAS  PubMed  Google Scholar 

  133. Neri P, Tassone P, Shammas M, Yasui H, Schipani E, Batchu RB et al. Biological pathways and in vivo antitumor activity induced by Atiprimod in myeloma. Leukemia 2007; 21: 2519–2526.

    Article  CAS  PubMed  Google Scholar 

  134. Heller G, Schmidt WM, Ziegler B, Holzer S, Mullauer L, Bilban M et al. Genome-wide transcriptional response to 5-aza-2′-deoxycytidine and trichostatin a in multiple myeloma cells. Cancer Res 2008; 68: 44–54.

    Article  CAS  PubMed  Google Scholar 

  135. Duus J, Bahar HI, Venkataraman G, Ozpuyan F, Izban KF, Al-Masri H et al. Analysis of expression of heat shock protein-90 (HSP90) and the effects of HSP90 inhibitor (17-AAG) in multiple myeloma. Leuk Lymphoma 2006; 47: 1369–1378.

    Article  CAS  PubMed  Google Scholar 

  136. Ocio EM, Maiso P, Chen X, Garayoa M, Alvarez-Fernandez S, San-Segundo L et al. Zalypsis: a novel marine-derived compound with potent antimyeloma activity that reveals high sensitivity of malignant plasma cells to DNA double-strand breaks. Blood 2009; 113: 3781–3791.

    Article  CAS  PubMed  Google Scholar 

  137. Burington B, Barlogie B, Zhan F, Crowley J, Shaughnessy Jr JD . Tumor cell gene expression changes following short-term in vivo exposure to single agent chemotherapeutics are related to survival in multiple myeloma. Clin Cancer Res 2008; 14: 4821–4829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shaughnessy Jr JD, Qu P, Edmondson P, Herman D, Zhou Y, Tian E et al. Changes in the expression of proteasome genes in tumore cells following short-term proteasome inhibitor therapy predicts survival in multiple myeloma treated with bortezomib-containing multi-agent chemotherapy. Blood (ASH Annual Meeting Abstracts) 2008; 12: 733.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Cancer Institute (grants CA55819-09 and CA97513-01), the Lebow Fund to Cure Myeloma, and the Nancy and Stephen Grand Fund. The manuscript was edited by the Office of Grants and Scientific Publications, University of Arkansas for Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J D Shaughnessy Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Barlogie, B. & Shaughnessy, J. The molecular characterization and clinical management of multiple myeloma in the post-genome era. Leukemia 23, 1941–1956 (2009). https://doi.org/10.1038/leu.2009.160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/leu.2009.160

Keywords

This article is cited by

Search

Quick links