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An optical fiber network oracle for NP-complete problems

Kan Wu', Javier Garcia de Abajo>?, Cesare Soci', Perry Ping Shum' and Nikolay I Zheludev"*

The modern information society is enabled by photonic fiber networks characterized by huge coverage and great complexity and ranging
in size from transcontinental submarine telecommunication cables to fiber to the home and local segments. This world-wide network
has yet to match the complexity of the human brain, which contains a hundred billion neurons, each with thousands of synaptic
connections on average. However, it already exceeds the complexity of brains from primitive organisms, i.e., the honey bee, which has a
brain containing approximately one million neurons. In this study, we present a discussion of the computing potential of optical
networks as information carriers. Using a simple fiber network, we provide a proof-of-principle demonstration that this network can
be treated as an optical oracle for the Hamiltonian path problem, the famous mathematical complexity problem of finding whether a set
of towns can be travelled via a path in which each town is visited only once. Pronouncement of a Hamiltonian path is achieved by
monitoring the delay of an optical pulse that interrogates the network, and this delay will be equal to the sum of the travel times needed
to visit all of the nodes (towns). We argue that the optical oracle could solve this NP-complete problem hundreds of times faster than
brute-force computing. Additionally, we discuss secure communication applications for the optical oracle and propose possible

implementation in silicon photonics and plasmonic networks.
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INTRODUCTION
A class of famous complexity problems known as NP-complete pro-
blems"* consists of such tasks as the traveling salesman problem that
aims to find the shortest possible route on a map,'” the satisfiability task
of determining a Boolean interpretation of the formula® and the real-
word ‘clique problem’ of graph theory for finding the largest subset of
people who all know each other.* Importantly, different NP-complete
problems can be transferred to each other using a polynomial time
reduction, which indicates that if one of these problems can be solved
in a certain time, all of the others can be solved in that time plus a
polynomial time induced by the reduction. Unfortunately, the brute-
force algorithm solution time increases exponentially with the size of
the problem, and after many years of research, no improved algorithm
has been found to solve these problems within a polynomial time using
a deterministic Turing machine. In fact, many researchers believe that
such an algorithm does not exist in principle. As a response to this
failure of conventional computers, a number of physics approaches
have been considered for NP problems.” These approaches include
the use of soap bubbles, protein folding, quantum®’ and DNA®*°
computing. Optical computing also has been explored," ™* including
free-space white light interference,'”” beam masking'>'*™'® and time
delay approaches.'>'? Unfortunately, not one of them reduces the com-
plexity of the problem or offers technologically efficient solutions with-
out exponentially increasing the demand on physical resources.

In this work, we provide experimental evidence that an NP-com-
plete problem may be solved using an optical telecommunication fiber

network as the information carrier. We demonstrate this approach
using the directed Hamiltonian path problem of deciding whether a
map can be traveled in a unidirectional manner such that each town is
visited exactly once by exploiting our network as an ‘oracle’ for making
a judgment on the existence of the Hamiltonian path rather than for
finding the exact path itself. We argue that although our solution does
not remove the fundamental mathematical complexity, it provides a
robust and fast oracle that could be scaled to analyze maps of consi-
derable size. Realization and demonstration of a fast-working solution
for NP-complete problems within telecommunication networks may
have a significant potential impact in applications such as secure com-
munications, routing optimization and optical data processing.

The graph is implemented as a network consisting of optical fibers
(roads) that connect all of the nodes (towns), and the network is
probed using a short optical pulse. Visiting each town introduces a
unique delay, and therefore, the existence of a directed Hamiltonian
path can be asserted if a pulse is observed after a time delay equal to the
sum of all of the towns’ delays. A proof-of-principle demonstration is
performed on a fiber network representing a graph with five towns in
which the decision is successfully obtained in only a few tens of nano-
seconds. Although this result does not break the limitation of expo-
nential solution time for NP-complete problems, our approach allows
solution of this NP-complete problem at a rate that is hundreds of
times faster than that of brute-force computing and may already find
applications in routing and secure communications. In addition, to
ease certain scaling issues typical of physical methods and to realize
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more complex cognitive photonic functions, the optical oracle can
readily be implemented in integrated optical networks, such as silicon
photonics or plasmonic networks.

MATERIALS AND METHODS

A target graph with five nodes (towns) connected by directional paths
(roads) is chosen to determine whether there exists a directed
Hamiltonian path, as shown in Figure la. Node 1 is set as both the
starting and ending node. It can be observed that a Hamiltonian path
of 1-2—5—3—4—1 exists. The concept underlying this approach is
that an optical pulse is injected into the graph starting from node 1 to
mimic the behavior of a ‘traveler’. The pulse ‘traveler’ simultaneously
attempts all possible routes in the graph. For example, a pulse that
reaches node 2 from node 1 will simultaneously try the path from
node 2 to node 3 and the path from node 2 to node 5. The return
pulses are monitored at node 1. These pulses represent all of the
different routes in the graph that start from and end at node 1.
These routes include three basic loops: (i) 1(inject)—>2—3—4—1;
(ii) 1(inject)—>5—3—>4—1; and (iii) 1(inject)—>2—5—>3—>4—1, as
well as the combinations of these basic loops, i.e., 1(inject)—
2—3—4—1—-2 —-5—3—4—1. Thus, if pulses traveling along differ-
ent routes can be separated, the pronouncement of the existence of the
Hamiltonian path becomes trivial. The method we use assigns specific
delays to each node, i.e., node j has a delay of T; (j=1-5). The delay of
each node is chosen such that its sum Z?:l T; can only be obtained by
summing each node’s delay exactly once. This approach indicates that
for a pulse that visits all of the nodes exactly once, the delay that it
experiences is unique, i.e., this pulse will not overlap with other pulses
traveling along different routes in the pulse train returning to node 1.
If such a pulse is observed from the returning pulses after a total delay
of Z?;l T;, then we can conclude that a Hamiltonian path exists;
otherwise, the answer is negative.

The actual realization of the graph is based on optical fiber and fiber
couplers, as shown in Figure 1b. Details of the actual components and
signal propagation are provided in Supplementary Information. For
the specific graph used in this proof-of-concept demonstration, the
delays of each node are set using different lengths of fibers, i.e., 18.8 ns
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for node 1, 14.8 ns for node 2, 15 ns for node 3, 5 ns for node 4 and
28.4 ns for node 5, such that the total delay 2]5:1 T;=82 ns is unique.
General strategies for the assignment of node delays in large graphs
with arbitrary numbers of nodes and connections are discussed in the
following section.

RESULTS AND DISCUSSION

The experimental set-up is shown in Figure 2. Light from an amplified
spontaneous emission source at 1.55 pm is modulated by a Mach-
Zehnder intensity modulator driven by an electrical pulse generator.
After the modulator, the optical pulses have a pulse width of 8 ns, a
repetition rate of 1 MHz and a pulse energy of 48 pJ. The pulses are
injected into the target graph shown in Figure 1b. The pulses exiting
the graph are detected by a photodetector and monitored by a real-
time oscilloscope triggered by the synchronization signal from the
pulse generator. Use of a low-coherence amplified spontaneous emis-
sion source guarantees that the pulses in the graph are incoherently
combined in the fiber coupler (e.g., node 2 and node 5 combine their
output pulses at node 3). Otherwise, coherent addition would lead to
pulse energy fluctuation due to interference and fiber length fluc-
tuation. The pulse train outputs from the graph are shown in
Figure 3a—-3c. The output from node 1 shown in Figure 3a is also
the output of the entire graph. The time axis shows the delay with
respect to the injected pulse. In Figure 3a, the first pulse is the pulse
that travels along the path of 1(inject)—>2—3—4—1, and its time
delay with respect to the injected pulse is 53.6 ns. The second pulse
with equal amplitude is the pulse that travels along the path of
1(inject)—5—3—4—1, and its time delay is 67.2 ns. The delay relative
to the first pulse is 13.6 ns. The third pulse is the pulse that travels
along the path of 1(inject)—>2—5—3—4—1, and its time delay is
82 ns, which is equal to the sum of the total delays. The observation
of this pulse proves the existence of a Hamiltonian path in the graph.
This pulse visits an additional node compared with the paths of the
first two pulses, and thus, its amplitude is half of that of the first two
pulses. Certain pulses with smaller amplitudes also can be observed.
These pulses propagate two cycles in the graph, and their time delays
and amplitudes are summarized in Table 1.
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Figure 1 Optical network representation of the graph. (a) lllustration of the oracle approach to solution of the Hamiltonian path problem on a target graph with five
nodes. An optical pulse is injected into the optical network and travels along all possible paths. A Hamiltonian path exists if a pulse returningto node 1 is observed after a
delay equal to the total delay of the entire network. (b) Actual design of the graph with optical fiber components. The optical pulse is injected into the network via a
50: 50 fiber coupler. All of the couplers shown in nodes 2, 3and 5are 50 : 50 fiber couplers. The pulses returning to node 1 are extracted using an 80 : 20 fiber coupler,
and 80% of their power is re-injected into the network. The delay of each node is realized by inserting a certain length of optical fiber. Two monitoring ports are included

at nodes 3 and 5.
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Figure 2 Experimental set-up for solving the Hamiltonian path problem with an optical oracle. Light from a low-coherence ASE source is fed into an optical intensity
modulator driven by an electrical pulse generator. The pulse train after the modulator has a pulse energy of 48 pJ, a pulse width of 8 ns and a repetition rate of 1 MHz.
The pulse train is injected into the target graph built from an optical fiber network. The pulses exiting the graph are monitored by a photodetector and an oscilloscope for
detection of the pulse, thus indicating the existence of a Hamiltonian path. ASE, amplified spontaneous emission.

The inset of Figure 3a shows the output from node 1 on alarger time
scale. It can be seen that the amplitudes of the output pulses vanish
within 200 ns and thus do not overlap with the pulse train generated by
the following injected pulse. Figure 3b shows the output pulses from
the monitoring port of node 3. Because the output pulses of node 3
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Figure 3 Pulse train outputs from the graph. Outputs from (a) node 1, (b) node 3
and (c) node 5 of the graph and outputs from (d) node 1, (e) node 3 and (f) node 5
after the path from node 2 to node 5 is disconnected. The inset of (a) shows the
pulse outputs from node 1 on a larger time scale. All of the time axes are refer-
enced to the pulse injected into the graph. It can be observed that in (a)—(c), the
third pulse has a delay of 82 ns, which is equal to the total delay of the graph.
Therefore, this pulse indicates the existence of a Hamiltonian path. In comparison,
in (d)—(f), because the path from node 2 to node 5 is disconnected, there is no
Hamiltonian path, and the third pulse disappears accordingly. These results con-
firm that our approach is effective in indicating the existence of a Hamiltonian path.
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propagate to node 1 via node 4, they are expected to be the same as the
output pulses from node 1 (i.e., pulses in Figure 3a) except for differ-
ent pulse amplitudes. For easy comparison with the pulses shown in
Figure 3a, the time axis of Figure 3b is shifted such that the corres-
ponding pulses can be shown in the same timing position, i.e., the first
pulse in Figure 3b generates the first pulse in Figure 3a, the second
pulse in Figure 3b generates the second pulse in Figure 3a, and so on.
For the output of node 5 shown in Figure 3¢ (note that the time axis is
shifted in a manner similar to that of Figure 3b), the first pulse is the
one originating directly from node 1, and the second pulse is the one
traveling from node 1 vianode 2. All of the remaining small-amplitude
pulses also can be identified in a similar manner, as summarized in
Table 1.

To verify the validity of the proposed optical approach for deter-
mining the existence of a Hamiltonian path, we disconnected path
2—5 in the graph. In this condition, the third pulse corresponding to
the Hamiltonian path 1(inject)—2—5—3—4—1 is expected to dis-
appear from the output pulse trains in nodes 1, 3 and 5. This behavior
is indeed confirmed by the outputs shown in Figure 3d—3f, which were
recorded after breaking the connection from node 2 to node 5.

The key to the unambiguous oracle performance is the assignment
of suitable delays for each node in the graph. If the number of nodes is
small, as in our proof-of-concept demonstration, assignment of
unique delays is straightforward. For the general case of a graph with
N nodes and arbitrary connections among different nodes, node
delays must be employed that satisfy the following relationship:

N N
Y GT=> TeC=CG=..=Cy=1 (1)
j=1 j=1

where C; is a non-negative integer representing the number of times
node j has been visited, and Nis the number of nodes in the graph. In
other words, the total delay introduced by the Hamiltonian path can
only be obtained by summing the delay of each node in the graph
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Table 1 Summary of the time delays of the pulses output from node 1 in Figure 3a

Delay with respect to

Delay with respect to Amplitude with respect to

Pulse no. Path the injected pulse (ns) the first pulse (ns) the first pulse

1 1(in)—»2—3—4—-1 53.6 0 1

2 1(in)»5—3—4—-1 67.2 13.6 1

3 1(in)—»2—-5—-3—-4—1 82 28.4 0.5

4 1(in)»2—3—4—-1-2—-3-4-1 107.2 53.6 0.1

5 1(in)»2—3—-4—-1-55-3-4-1 120.8 67.2 0.2
1(in)»5—-3—4—-1-2—-3-4-1 120.8 67.2

6 1(in)»5—-3—-4—-1-5-3-4-1 134.4 80.8 0.2
1(in)»2—3—4—-1-2—-5—-3-4->1 135.6 82
1(in)}»2—-5-3—-4—-1-2—-3-4-1 135.6 82

7 1(in)»5—-3—4—-1-2—-5-3-4-1 149.2 95.6 0.1
1(in)}»2—-5—-3—-4—1-5-3-4—1 149.2 95.6

exactly once. Such delay combinations exist. A theoretical proposal of
delay assignment suitable for optical solution of the Hamiltonian path
problem was advanced by Oltean:'?

T=Ar- (2N -271) 2

where At is the optical pulse duration. The corresponding solving time
is Ar-N2". Alternative assignments also can be found, e.g.,

T=Ar-(2N +2/7) 3)

r=ae () /o @

where p; (j=1-N) is a prime number. Detailed proof of the validity
of these two unique assignments is provided in Supplementary
Information.

Similar to other ‘physical” approaches, i.e., soap bubbles or DNA
computing, the ability of the optical oracle to solve large NP problems
is limited by scaling of the physical resources required, including the
overall length of the optical fibers needed to encode the network and
the light intensity required to overcome absorption losses or pulse
width broadening due to dispersion. For example, if a 30-node graph
is constructed as an optical oracle fiber network using the delay assign-
ments in Equation (2) and is interrogated with 1-ps optical pulses, its
implementation would require a minimum fiber length of approxi-
mately 100 km and a maximum fiber length of approximately 200 km.
Although such lengths may require in-fiber optical signal amplifica-
tion to compensate for the losses, this approach is widely used in
telecom networks and is within reach of current fiber technology.
Dispersion-induced pulse broadening also can be overcome by choos-
ing a center wavelength for the probe pulse that is close to the
zero dispersion point of the fiber and using dispersion compensation
elements.

The optical oracle relies on short pulses that propagate with the
speed of light and the massive parallelism of fiber networks resulting
from multiple branching of the pulses. This structure enables a fast and
reliable pronouncement on the existence of a Hamiltonian path. For
comparison, a brute-force search on a conventional computer would
require up to N! attempts. Even with smart algorithms such as
dynamic programming, the conventional computers would require
approximately 1/8: N*2" operations (additions and comparisons).**?!
For computers with a clock period 7, this process will require at least
7:1/8-N*2N's to perform, which indicates that our approach is Nt/8At
times faster than dynamic programming algorithms. With a pulse
duration of 1 ps, a graph with 30 nodes could be solved approximately
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375 times faster than with a 10-GHz clock rate computer. We note that
the optical oracle loses to probabilistic Monte Carlo algorithms*" that
can solve the Hamiltonian path problem with a certain degree of
uncertainty in time O(1.657"). However, our approach completely
excludes false predictions.

Practical applications of the Hamiltonian path oracle could include
secure communications in which a scrambled binary signal sequence
(or key) is encoded as a sequence of graphs, each of which represents
either ‘1’ or ‘0’ bits in the binary signal depending on whether they
support the Hamiltonian path. For a graph of 30 nodes, the
Hamiltonian path oracle pronouncement with dynamic program-
ming algorithms would require approximately 12 s on a 10-GHz clock
rate electronic computer, whereas the optical oracle could accomplish
this task in a brisk 32 ms. Although the network will be multifarious, it
could be easily reconfigured using optomechanical switches, thus
allowing the interrogation of hundreds of networks within a second.
Therefore, on a reconfigurable oracle, the scrambled sequence (or key)
may be unscrambled in a time proportional to the number of bits
in the sequence and the time needed to reconfigure the network and
verify the existence of the Hamiltonian path (ms), whereas if
performed by brute-force computing, it may require a prohibitive
amount of time.

CONCLUSIONS

In conclusion, we have provided an experimental demonstration of
how a fiber network can be used to solve a well-known NP-complete
problem. Although we do not suggest that existing global or local
optical fiber networks can realistically be deployed for computing
applications, we argue that in the future, highly reconfigurable optical
fiber networks should not be overlooked as a powerful computing and
decision-making hardware platform. Moreover, our strategy also can
be implemented on a silicon photonics platform, and in principle,
could be deployed on plasmonic waveguide networks with femto-
second lasers by exploiting the slow dispersion of plasmon polariton
pulses.”? This approach would allow for compact, highly integrated
solutions and the development of multiple network parallel architec-
tures similar to the multicore structure of conventional processors.
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