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The term ‘field effect’ (also known as field defect, field cancerization, or field carcinogenesis) has been used to

describe a field of cellular and molecular alteration, which predisposes to the development of neoplasms within

that territory. We explore an expanded, integrative concept, ‘etiologic field effect’, which asserts that various

etiologic factors (the exposome including dietary, lifestyle, environmental, microbial, hormonal, and genetic

factors) and their interactions (the interactome) contribute to a tissue microenvironmental milieu that constitutes a

‘field of susceptibility’ to neoplasia initiation, evolution, and progression. Importantly, etiological fields predate

the acquisition of molecular aberrations commonly considered to indicate presence of filed effect. Inspired by

molecular pathological epidemiology (MPE) research, which examines the influence of etiologic factors on cellular

and molecular alterations during disease course, an etiologically focused approach to field effect can: (1) broaden

the horizons of our inquiry into cancer susceptibility and progression at molecular, cellular, and environmental

levels, during all stages of tumor evolution; (2) embrace host–environment–tumor interactions (including gene-

environment interactions) occurring in the tumor microenvironment; and, (3) help explain intriguing observations,

such as shared molecular features between bilateral primary breast carcinomas, and between synchronous

colorectal cancers, where similar molecular changes are absent from intervening normal colon. MPE research has

identified a number of endogenous and environmental exposures which can influence not only molecular

signatures in the genome, epigenome, transcriptome, proteome, metabolome and interactome, but also host

immunity and tumor behavior. We anticipate that future technological advances will allow the development of

in vivo biosensors capable of detecting and quantifying ‘etiologic field effect’ as abnormal network pathology

patterns of cellular and microenvironmental responses to endogenous and exogenous exposures. Through an

‘etiologic field effect’ paradigm, and holistic systems pathology (systems biology) approaches to cancer biology,

we can improve personalized prevention and treatment strategies for precision medicine.
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Cancers are fundamentally complex, multifactorial,
genomic, and epigenomic diseases,1–5 which
represent a major burden on societies globally.
However, many cancers are potentially avoidable,
with estimates suggesting that 60% of cancer deaths
in the United States are attributable to a limited
number of lifestyle factors.6 A better understanding
of modifiable contributors to cancer initiation,
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evolution, and progression is a prerequisite for
accurate risk prediction and the development of
better strategies for prevention, early detection,
treatment, and surveillance.1–5,7–10

The revolutionary theory of field effect (also
known as field defect, field cancerization, or field
carcinogenesis) has been continually adapted and
updated since it was first consolidated by Slaughter
et al11 in 1953. The description of ‘field canceriza-
tion’11 is regarded as one of the landmarks of the
past 100 years of cancer research.12 Several authors
have recently reviewed the field effect concept and
its evolution,13–18 and the presence of a recent
textbook19 entirely devoted to the topic attests to
its continued clinical and scientific importance.

In this article, we offer a reappraisal of field effect,
approaching the concept from an etiologic perspec-
tive. We term this alternative model ‘etiologic field
effect’, where endogenous and exogenous etiologic
factors (such as dietary, lifestyle, environmental,
microbial, hormonal, and genetic variations), and their
interactions, predispose to an abnormal tissue micro-
environmental milieu that can influence all stages of
tumor evolution. We have taken into account the
possible contribution of stromal cells and the micro-
environment,20–24 and developed a paradigm where
macroenvironmental and microenvironmental influ-
ences, in their totality, contribute to a field of etiologic
predisposition to disease. The etiologic field effect
concept embraces tumor–host interactions,3,25–32 and
gene–environment interactions, which have become
increasingly important in molecular epidemiology.33

There are several advantages to an etiologically
oriented model of field effect, as elaborated upon in
the following sections. An etiologic field effect
concept can enhance the scope of the traditional
field effect model and can effectively explain a variety
of phenomena relevant to cancer causation and
progression. Effective lifestyle interventions, such as
dietary modification and physical activity, can be
thought of as mechanisms through which etiologic
fields can be attenuated throughout the body, preven-
ting cancer occurrence and progression, and decrea-
sing cancer burden in our society.34,35

Evolution of the field effect concept

The concept of field effect was proposed by
Slaughter et al,11 in their 1953 landmark paper, in
an attempt to explain the phenomenon of synchro-
nous or metachronous primary tumors arising
within the oral mucosa. In this context, ‘field
effect’ implied an inherent predisposition of the
non-cancerous mucosa to malignant transformation.

Before the advent of molecular pathology, support
for the field effect model relied on pathological
observations describing histological abnorma-
lities in grossly normal-appearing tissue adjacent
to cancers.11 Subsequently, molecular genetic
analyses of cancerous, precancerous, and normal

tissues have yielded persuasive evidence that a
field of cancer-predisposing molecular alterations
can be present even in microscopically normal
tissue.13–19,36,37 The existence of field effect has been
described in a variety of tissues, spanning almost all
organ systems in the human body.13–19,38–45 More
recently, studies of epigenetic changes in tumors and
normal cells,14,15,46–57 as well as analyses of stromal
cells and the tissue microenvironment have contri-
buted to the molecular field effect concept.20–24

Consequently, the prevailing interpretation of
field effect is that a field of somatic molecular
alteration in a given organ or tissue predisposes to
tumor development within that field. The mechan-
isms through which geographic fields of molecu-
larly abnormal cells arise are not fully understood,
but clonal expansion and intraepithelial migration
of genetically altered cells within contiguous epithe-
lial structures has been proposed.36,58 As a result of
supporting evidence that has accrued through histo-
pathological, genetic, and, most recently, epigenetic
studies, the field effect concept has become firmly
established.13–19 Importantly, altered molecular field
may represent a potential therapeutic target.59,60

Synchronous primary tumors and field
effect: insights and intrigue

Field effects have been implicated in the
co-occurrence of tumors in more than one organ.
Examples of such multi-organ involvement by field
effect include tumors arising within the ductal
epithelia of the pancreas, ampulla of Vater, extra-
hepatic bile ducts, and gallbladder,44 respiratory
epithelia of the lung, bronchi, trachea, larynx and
nose,59,61 and urothelium of the bladder, ureters,
and renal pelves.45,62–64 While shared ontogeny has
been hypothesized to contribute to certain multi-
organ field effects (eg in epithelia derived from
embryonic foregut),44 multi-organ involvement can
span tissues arising from more than one embryonic
germ layer, as exemplified by urothelial tumors;
upper urinary tract structures derive from the
mesonephros (mesoderm), while the bladder and
urethra arise from the urogenital sinus (endoderm).

The term ‘synchronous tumors’ generally refers to
two or more primary tumors arising contempora-
neously within a single individual. Synchronous
primary neoplasms, particularly those originating
within a single contiguous organ system, may
develop as a result of field effect phenomena.
It should be noted, however, that the absence of
synchronous, or even a solitary cancer, does not
exclude the existence of field effect; cancer deve-
lopment, per se, is not a requirement for defining
field effect. This is an important consideration if we
are to exploit field effect to develop screening and
preventive strategies.

Synchronous cancers can provide a unique
insight into the somatic molecular aberrations that
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might constitute a field effect.65,66 Indeed, a number
of studies have documented the presence of shared
molecular features between synchronous primary
tumors,67–77 which would support the influence of a
field effect present in the ostensibly ‘normal’ tissue
from which they have arisen.13–17 Alternatively, it
can be considered that synchronous primary tumors
arise through the interplay between common etio-
logic contributors, such as genetic predisposition,
microbial and environmental exposures, and life-
style factors, which facilitate progression through
certain common carcinogenic pathways.65,67,71

Importantly, the latter model does not imply
that the molecular features shared by synchronous
tumors need to be present in the background
‘normal-appearing’ tissue.

In structurally continuous epithelial tissues, such as
the orodigestive and respiratory mucosae, it is perhaps
conceptually easy to envisage how multiple primary
tumors could arise from a field of molecularly altered
cells. It is well documented, however, that field effects
appear to influence carcinogenesis in non-contiguous
structures, for example, in bilateral primary breast
cancer. Right and left breasts are separate organs, with
no connections existing between glandular or ductal
epithelia of the right and left breasts. Despite this
anatomic independence, a number of studies have
shown that synchronous and metachronous bilateral
breast cancers tend to demonstrate concordance in
expression status for the hormone receptors ESR1
(estrogen receptor-alpha) and PGR (progesterone
receptor).71 These data imply that, in bilateral breast
cancer, independent primary tumors tend to evolve
through similar carcinogenic pathways, compared
with cancers arising in two different individuals.

Similarly, spatially distinct primary tumors can arise
within a single organ system despite the complete
absence of detectable classical field change in the
background normal mucosa. We have previously
demonstrated that synchronous colorectal cancers
tend to show concordant molecular features (including
DNA hypomethylation and CpG island hypermethyla-
tion) without similar molecular changes in intervening
normal colonic mucosa.67 While these observations are
not necessarily at odds with the conventional field
effect model, they underscore the need for emphasis to
be placed on the putative factors that predispose to
tumor initiation, or facilitate tumor evolution through
specific, common carcinogenic pathways, where the
end result is tumors with shared molecular features. It
would also seem advantageous to develop a model
where detectable somatic alterations, similar to those
found in established cancers, are not prerequisite for
defining a field.

Predisposition to neoplasia: exploring
the geographic limits of field effect

It is incontrovertible that multiple primary tumors
can arise within a background population of

genetically predisposed cells. One concrete example
of this mechanism is the presence of highly pene-
trant cancer syndromes,78 such as Lynch syndrome,
where genetic predisposition to multiple primary
tumors in one or more organ systems has been
described.79,80 In genetic predisposition syndromes,
virtually every cell in the body carries a copy of the
mutated gene and, as such, these syndromes may be
considered whole-body mutational field effects.
Germline inheritance of cancer-predisposing vari-
ants is perhaps beyond the intended scope of the
conventional field effect concept. Furthermore,
familial cancer predisposition syndromes contri-
bute only a relatively small proportion of cases to
the overall incidence figures for common cancers.
Genetic influences, however, remain important in
‘sporadic’ cancers, which are considered to result
from the interplay of genetic and environmental
influences.81,82

In non-syndromic cancers, evidence suggests that
high-prevalence low-penetrance genetic variants
(including those identified by genome-wide asso-
ciation study, GWAS) predispose to the acquisition
of specific somatic molecular alterations.83,84 For
example, studies have shown a consistent associ-
ation between a common single nucleotide polymor-
phism in the MGMT promoter (rs16906252), and
MGMT promoter CpG island hypermethylation in
several cell types, including colorectal cancer,85

normal colonic cells,86 normal peripheral blood
cells,87 lung adenocarcinoma and premalignant
lesions,88 and malignant pleural mesothelioma.89

In this example, a whole-body field effect, confer-
red by the common MGMT promoter single nucleo-
tide polymorphism, appears to predispose many
distinct cell types to an acquired epigenetic event,
ie, somatic MGMT promoter hypermethylation.

In a manner analogous to inherited genetic vari-
ants, environmental, and other exogenous expo-
sures, such as dietary and lifestyle factors, may also
actuate or promote the accrual of specific somatic
genetic or epigenetic alterations.90,91 Indeed, epi-
genetic mechanisms are recognized to serve as a
link between environmental influences and gene
regulation.92

Beyond cancer syndromes, it is postulated that
genetic determinants, endogenous, and exogenous
environmental exposures can influence neoplastic
transformation at multiple body sites. One would
therefore expect there to be evidence of a wider,
multi-organ, or even whole-body, field effect in
cancer-predisposed individuals. It has been pro-
posed that biomarkers at ‘surrogate anatomic/
functional sites’ can be evaluated for presence of
‘an extended field effect’, indicative of elevated
cancer risk.54,61,62,93,94 Likewise, epigenetic aberra-
tions detectable in peripheral blood cells have been
speculated to reflect constitutional cancer suscep-
tibility.95,96 Importantly, epidemiological studies
have demonstrated clear pleiotropic effects for
certain etiologic exposures, most notably smoking.
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Moreover, data from a large population-based study
suggest increased familial clustering of cancers at
different sites, which may be due to common genetic
susceptibility as well as shared environmental
exposures.97 Thus, evidence does exist to support
a more systemic etiologic contribution to field effect,
involving the interplay between germline genetic
variants and environmental exposures.

The genesis of the ‘etiologic field effect’

The evolving field of molecular pathological epide-
miology (MPE) has resulted in the discovery of a
number of robust relationships between etiologic
factors and somatic molecular alterations in human
cancers and normal tissues.90,91 These relationships
include the associations between the following:
reproductive and hormonal influences (such as age
at menarche, parity, age at first full term-pregnancy,
lactation, and hormone therapy) and risk of mole-
cularly defined subtypes of breast cancer (by
ESR1, PGR and ERBB2 expression);98–101 the MLH1
rs1800734 single nucleotide polymorphism and
MLH1 promoter hypermethylation (or micro-
satellite instability) in endometrial and colorectal
cancers;102–106 genetic modifiers of one-carbon meta-
bolism, micronutrient intake, and DNA methylation
in colorectal cancer;107–114 body mass index (or
obesity), microsatellite instability, and fatty acid
synthase (FASN) expression level in colorectal
cancer;115–121 cigarette smoking and microsatellite
instability, CpG island methylator phenotype, and
BRAF mutation in colorectal cancer;122–127 cigarette
smoking and KRAS mutation in lung tumors;128–130

young age of onset and family history of colorectal
cancer, and LINE-1-hypomethylated colorectal
cancer;131–135 interactions between aspirin use and
molecular features of colorectal cancer;136–139

Epstein–Barr virus and CpG island hypermethylation
in gastric cancer;140–142 H. pylori infection and CpG
island methylation in gastric epithelial cells;143,144

viral hepatitis and CpG island hypermethylation in
hepatocellular carcinoma;145–147 and the MGMT
rs16906252 promoter single nucleotide poly-
morphism and MGMT promoter hypermethylation
in normal cells and various cancers.85–89 The MPE
paradigm, which can encompass all human
diseases,148 is firmly established,149–152 and has
gained widespread recognition.121,153–176

As a result of MPE research, considerable
evidence has accumulated to support the concept
that cells in one or more organs, or organ systems,
can become predisposed, in a tissue-specific or less
specific fashion, to the acquisition of well-defined
somatic molecular alterations. Thus, internal sus-
ceptibility, in the form of heritable genetic and
epigenetic variants, and exposure to exogenous
influences, such as microorganisms, environmental
toxins, dietary components, and lifestyle factors,
converge at the level of the tissue microenviron-

ment, and mediate the propensity to neoplastic
transformation and progression through cell–cell
and extracellular matrix–cell interactions.4,177,178 In
other words, every cancer (or, indeed, every disease
process) results from changes in interactomes, with
interactomes ultimately dictating how tumors
behave. Interactomes179 encompass the entirety of
complex molecular interactions within a cell, bet-
ween cells and stromal components in the tissue
microenvironment, within tissues and organs, and
even at the level of a whole organism. The inter-
actome is the ultimate interface through which
external stimuli interact with host biological
systems. The interactome therefore includes gene–
environment interactions, which have become
increasingly important as the basis for molecular
epidemiology studies. Early changes in interactomes
can be regarded as an expanded notion of ‘field
effect’, and could be utilized as a marker of
increased tumor or disease risk.

There is no real provision for the interaction of
heritable and environmental risk modifiers in the
conventional interpretation of field effect. Taking
into account the aforementioned MPE research
findings, and cognizant of the importance of the
potential for interplay between diverse etiologic
exposures in carcinogenesis, we developed an
alternative field effect model, which we term ‘etio-
logic field effect’. In contrast to the conventional
field effect model, where the ‘cancer-susceptible
field’ comprises a distinct molecular or cellular
change in an anatomically defined area, the ‘etiolo-
gic field effect’ focuses principally on the dynamic
interplay between fields of exposure to etiologic
factors, which may alter a tissue’s microenviron-
mental milieu. An etiologic field can be defined as ‘a
functional field of altered tissue microenvironment
that predisposes to the acquisition of specific
somatic molecular changes through alterations in
cellular and extracellular interactomes’. Etiologic
fields are characterized by the presence of common
etiologic exposures, rather than by cellular molecu-
lar aberrations. Since exposures frequently trans-
cend anatomic boundaries, etiologic fields are not
restricted to contiguous epithelial structures. As
etiologic exposures predate the establishment of
pathological cellular and molecular aberrations
that lead to neoplastic initiation and progression,
‘etiologic field effects’ are potentially reversible and
represent modifiable targets for intervention. Table 1
contrasts key features of the conventional field effect
with those of the ‘etiologic field effect’ concept.

There are tangible examples that illustrate how an
etiologically based model is better positioned to
explain certain field effect phenomena. Smoking
is well documented as a risk factor for colorectal
cancers that display specific molecular features,
namely, CpG island methylator phenotype, micro-
satellite instability, and BRAF mutation.122–127

Smoking has been associated with genome-wide
DNA methylation changes in blood leukocytes,
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which may imply its systemic effect on cellular epi-
genetic status.180,181 Smoking has also been shown
to be a strong risk factor for synchronous primary
colorectal cancers (R Nishihara et al, unpublished
data) and synchronous multiple polyps,182

especially serrated polyps,183 which are recognized
as precursors for colorectal cancers with CpG island
methylator phenotype, microsatellite instability
and/or BRAF mutation.159,184–186 CpG island methyl-
ator phenotype-high, microsatellite instability-high
and BRAF mutation can co-occur in colorectal
cancer,9,30,113,184,187–195 and are common characteris-
tics of synchronous colorectal cancers.67–70 Further-
more, synchronous primary colorectal cancers are
considered to arise due to some form of predispo-
sition, likely involving both genetic and environ-
mental factors.196 However, there has been little
evidence for conventional field effect in individuals
with synchronous colorectal cancers, ie, CpG island
methylator phenotype, microsatellite instability, and
BRAF mutation are not found in normal colonic
cells adjacent to synchronous colorectal cancers that
demonstrate these somatic molecular aberrations.67

Furthermore, smoking has been consistently asso-
ciated with BRAF-mutated colorectal cancer,122–127

but not with KRAS-mutated colorectal cancer, where
data are conflicting and complicated by publication
bias.197–201 It is difficult to explain the gene speci-
ficity of mutations if one assumes the role of tobacco
smoke as only a direct mutagen. Considering these
pieces of evidence together, it seems plausible that
smoking generates a field of tissue microenviron-
mental changes (as opposed to directly causing CpG
island methylator phenotype, microsatellite instabi-
lity or BRAF mutation), which may be advanta-
geous for the growth of specific neoplastic/
preneoplastic cells harboring BRAF mutation, but
not so conducive to the grown of KRAS-mutated
cells. The etiologic field of microenvironmental
changes induced by smoking may predispose to the
development of multiple cancers through similar
carcinogenic pathways (Figure 1).

Another example that profits from the adoption of
an ‘etiologic field effect’ model is the association
between early breast neoplasia (including lobular
carcinoma in situ and atypical ductal hyperplasia)
in one breast, and increased risk of subsequent
invasive breast cancer in the same breast, and also
the contralateral breast.75,76 This phenomenon is
likely related to tissue-specific gene-environmental
interactions, which can be considered to constitute a
type of field effect. The presence of an etiological
field therefore adequately explains this observation;
certain shared etiologic exposures lead to changes in
the breast tissue microenvironment resulting in
cancer susceptibility in both breasts.

In Figure 2, using the colon as an example, we
illustrate the temporal extent of ‘etiologic field
effect’ concept and compare it with the conventional
model of field effect. In the conventional model,
cancers arise in a field of cells harboring acquired
somatic molecular alterations. The ‘etiologic field
effect’ model takes into account both host and
exogenous factors, which, together, constitute a field
of microenvironmental alterations and susceptibi-
lity to cancer development and progression.3,90,91

Tumor initiation, evolution and
progression: exploring the temporal
limits of field effect

In contrast to the conventional field effect concept,
which essentially pertains to molecular events
associated with the initiating phases of neoplasia,
‘etiologic field effect’ extends temporally to incor-
porate biologic and physical etiologic factors that
promote microenvironmental changes leading to
cellular transformation, invasion, and metastasis
(Figure 3). For example, etiologic factors that
provoke or modulate inflammation (eg microbes,
genetic polymorphisms, drugs, and dietary expo-
sures) could contribute to an ‘etiologic field effect’

Table 1 Comparison of the key features of the conventional and ‘etiologic field effect’ models

Conventional field effect model ‘Etiologic field effect’ model

Defined by presence of aberrant cellular and/or molecular
changes

Defined by presence of etiologic exposures and their influence on
tissue microenvironment

Markers are usually neoplasia-associated molecular changes
observed within the target tissue

Markers may not, in themselves, be markers of neoplastic cells,
and may indicate microenvironmental changes. Markers may be
systemic, or detected at surrogate sites.

Implies a territory of altered premalignant or preneoplastic cells,
which are typically epithelial cells

Embraces the potential contribution of non-transformed cells and
extracellular matrices to neoplastic evolution

Focuses on associations between molecular aberrations and
cancer occurrence

Focuses on interactions between diverse etiologic exposures and
tumor initiation, evolution and progression, up to patient death

Typically pertains to contiguous anatomic structures Not restricted by anatomic boundaries and may involve multiple
anatomic sites

Implies a territory with defined borders May be represented by a continuum of variation in
microenvironmental change

Limited to initiating phases of neoplasia Encompasses all phases of neoplastic evolution
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that remains influential at all stages of tumor
evolution. Indeed, accumulating evidence on the
anti-neoplastic effects of aspirin, and other inhibi-

tors of PTGS2 (cyclooxygenase-2), supports exactly
such a model; inflammatory processes, susceptible
to the effects of these drugs, appear to be important
in the early phases of neoplasia (eg colonic adeno-
magenesis),202,203 during cancer evolution,204–206

and after cancer diagnosis,137,138 possibly inclu-
ding the development of distant metastases.205

Tobacco smoke is a further example of an exposure
that influences multiple phases of tumor evolution.
In addition to a role in the initiating phases of
bronchial carcinogenesis, components of tobacco
smoke are implicated in promoting lung cancer
growth and metastasis.207,208 Similarly, cigarette
smoke, a risk factor for breast cancer, may promote
epithelial-mesenchymal transition and increase the
metastatic potential of breast cancer cells.209

Tumor establishment at metastatic sites is depen-
dent on physical cellular interactions and cross-
talk between genetic, epigenetic, metabolomic and
environmental factors occurring in the local tissue
microenvironment.210 Thus, both tumor cell migra-
tion and the presence of a pro-metastatic micro-
environmental niche, conducive to tumor seeding,
could be ascribed to the presence of etiologic field
effects.

The ‘etiologic field effect’ is not limited to
epithelial cells, and embraces tumor–stromal
interactions in the microenvironment, as well as
macroenvironmental exposures and gene–environ-
ment interactions that effect microenvironmental
change.33 Interestingly, tumor stroma and micro-
environment may determine cancer molecular
phenotype,211 and even response to molecu-
larly targeted therapies.27,212,213 A small number of

Figure 1 An example of evidence for an ‘etiologic field effect’
phenomenon. Smoking has been shown to increase the incidence
of colorectal cancer displaying CpG island methylator phenotype,
microsatellite instability, and BRAF mutation, as well as the
incidence of synchronous colorectal cancers. Smoking, as an
etiologic exposure, creates a field effect manifest as altered
colonic tissue microenvironment. Microenvironmental change
induced by smoking promotes carcinogenesis via specific path-
ways resulting in synchronous tumors with shared molecular
features. As one might expect of an etiologic field, somatic
alterations (such as CpG island methylator phenotype, micro-
satellite instability, and BRAF mutation) are absent from non-
neoplastic tissue within the field.

Figure 3 One of the principal differences between the ‘etiologic
field effect’ and conventional field effect concepts is their
temporal associations. The conventional field effect typically
spans a relatively narrow part of neoplastic evolution spectrum,
from the acquisition of somatic aberrations to histologically
dysplastic pre-malignancy. The ‘etiologic field effect’, by compar-
ison, is relevant at all stages from neoplasia initiation to patient
death. The presence of ‘etiologic field effect’ precedes the
acquisition of pathologic somatic changes, and extends to be
influential in tumor evolution, invasion, and metastatic growth.

Figure 2 Comparison of conventional and etiologic field effect
models, using colon cancer as an example. (a) In the conventional
field effect model, a field of alteration ‘X’ in normal tissue (eg,
colon) makes an individual prone to cancer development within
that field. Normal colon in the field, and resulting synchronous
tumors, show the same molecular alteration ‘X’. (b) In an
‘etiologic field effect’ model, etiologic factors (which can be
multifactorial) generate a field of tissue microenvironmental
changes, favoring the development of cancers through a common
carcinogenic pathway characterized by molecular alteration ‘X’.
In this setting, resulting synchronous tumors demonstrate the
same alteration ‘X’, but normal tissue (eg, colon) need not
necessarily display the same molecular feature.
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studies have highlighted the contribution of tumor
stroma to field effect phenomena;20–24 however, the
discussion in these studies20–24 has tended to be
limited by the conventional notion of field effect.

Of note, ‘etiologic field effect’ phenomena do not
need to be discrete from phenomena that constitute
conventional field effect; rather, the two overlap
within the spectrum of cancer predisposition. As
with many features of biological systems, a ‘con-
tinuum’ model may afford a better representation of
reality.78,214,215 Etiologic fields may seamlessly span
multiple phases of neoplastic evolution, while their
anatomic boundaries are likely to be gradients of
tissue microenvironmental change, determined by
variation in the magnitude of and sensitivity to
a particular exposure.

Advantages and implications of the
‘etiologic field effect’ concept

The ‘etiologic field effect’ concept, as we perceive it,
is attractive. First, it does not conflict or diminish
the importance of the conventional notion of field
effect; rather, the ‘etiologic field effect’ concept
extends the temporal boundaries of the existing
paradigm, to encompass the entire process of tumor
evolution; exposure to etiologic factors generates a
field of altered tissue interactome that remains
influential throughout carcinogenesis, from initia-
tion to progression and metastasis, and, ultimately,
the demise of the patient. Second, the ‘etiologic field
effect’ concept shifts the focus of attention from
somatic genetic and epigenetic alterations to the
influence of etiologic factors that might predispose
to the acquisition of pathological molecular altera-
tions in the first place. The ‘etiologic field effect’
therefore broadens the horizons of our inquiry
into cancer susceptibility at molecular, cellular,
and environmental levels.

Most cancer and pre-cancer surveillance protocols
are based on the assumption of a persisting etiologic
susceptibility. In clinical practice, modifiable com-
ponents of etiological risk can be easily overlooked;
in scheduling a polyp surveillance colonoscopy, we
might miss opportunities for lifestyle interventions
targeted at adenoma risk factors.216,217 The term
‘etiologic field effect’ can successfully conceptualize
the rather vague assumption of etiologic predispo-
sition into a more concrete biomedical paradigm
with a focus on risk modification and disease
prevention. This concept can successfully act as
model for dietary and lifestyle interventions, which
have the potential to attenuate etiologic fields.

Epidemiologic and translational studies tend to
use cancer occurrences or premalignant intermedi-
aries (eg colorectal adenomas) as end points. For
effective preventive strategies, we must strive to
identify earlier markers of disease risk. Epidemio-
logic studies have linked low folate intake to
increased incidence of colorectal adenomas and

cancer.218,219 It is also known that tissue folate
status can modify molecular events in normal
colonic mucosa.220 As not all individuals with low
tissue folate will develop colorectal adenomas or
cancer, the ability to interrogate the normal mucosal
interactome for evidence of a pathological response
to folate depletion could aid risk stratification,
allowing for dietary or pharmacologic therapy to
be instituted where appropriate. Biosensors of
the presence and magnitude of ‘etiologic field
effect’ could therefore facilitate the development of
personalized prevention and treatment strategies.

An ‘etiologic field effect’ model may be informa-
tive for clinical and translational research. Clearly,
the potential for etiologic field effect to act as a
marker of the risk of cancer development, progres-
sion and/or metastasis constitutes an important area
for future investigation. If etiologic field can act as a
surrogate for disease risk, then evidence of etiologi-
cal field could be used as an outcome measure in
interventional studies of lifestyle modification or
pharmacologic therapies. The possibility that rever-
sal or modification of the etiologic field to a more
‘normal’ state can serve as a preventive strategy
also demands scrutiny in future studies.

As described above, etiologic field effect can
manifest as altered microenvironmental properties
or abnormal patterns of cellular and tissue response
to various endogenous and exogenous factors.
We speculate that, in the future, the integrated
efforts of ‘omics’ research, physical sciences, sys-
tems biology,2,221 and nanotechnologies222 will
help characterize complex molecular patterns
(epigenomic, proteomic, metabolomic, etc) of host
interactions with exogenous factors, giving rise to
markers capable of indicating exposure to etiologic
fields (Table 2). Markers of etiologic fields are likely
to reflect altered exposome, with the exposome
encompassing all exposures to which an individual
is subjected.223 We would suggest that future
biomarker discovery and validation efforts should
focus on the identification of biosensors that signal
the presence of disease susceptibility, rather than
indicate established, albeit early pathologic changes.
By means of illustration, recent data provide
evidence for an epigenetic field of promoter methyl-
ation in normal colonic mucosa, involving genes
distinct from those methylated in colorectal
cancers.224 Furthermore, pathway analysis demon-
strates that many of the differentially methylated
genes are involved in carbohydrate metabolism,
suggesting complex interactions between luminal
contents and the gut microbiome and metabolome.

Several biosensors and nanotechnologies have
already demonstrated the capacity for in vivo assess-
ment of tissue ultrastructural and microvascular
correlates of the genetic and epigenetic aberrations
that define conventional field effects.222,225,226

Indeed, nano-cytology and nano-cytoarchitecture
have been proposed as screening targets for field
carcinogenesis.226,227 It is therefore conceivable that
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the sophistication of future biosensors will enable
accurate assessment of in vivo real-time changes
in the microenvironmental interactome with high
resolution (ie, in vivo molecular pathology). By
detecting the very earliest alterations in the
biologic or physical properties of tissues, exposure
to detrimental etiological fields may be revealed
long before the acquisition of irreversible molecular
aberrations.

Conclusions

The existence of the conventional field effect is
irrefutable, and is supported by an abundance of

published research. Historically, advances in
science and technology have allowed us to define
field effects at increasingly earlier stages in carcino-
genesis. The new paradigm of ‘etiologic field effect’
represents a further advancement of the field effect
concept. This overarching interpretation of field
effect has not previously been conceptualized or
consolidated, as far as we are aware. Importantly,
the ‘etiologic field effect’ is better positioned to
explain several intriguing observations that are
inadequately accounted for by the conventional
interpretation of field effect. An important agenda
for future research in complex diseases, such as
cancer, is to decipher the complex interaction of
etiologic exposures in an attempt to understand how

Table 2 Potential approaches to discovery of ‘etiologic field effect’ markers

Approach Technologies Utility and limitations

Genomics Whole-genome sequencing, exome
sequencing, targeted sequencing, microarray-
based analyses

Whole-genome sequencing is capable of detecting all germline
genetic variants and is increasingly affordable. Recognized
susceptibility variants explain only a limited proportion of the
heritability of complex traits, and each disease-associated variant
usually has minimal impact on individual risk. Alone, personal
genome sequence data may poorly predict disease risk.228 Integration
with phenotypic data and other large-scale molecular data may
increase utility.229

Epigenomics Methylation microarrays, high-throughput
sequencing methodologies, microRNA arrays,
chromatin mapping technologies

High-resolution epigenome mapping is possible.230 Epigenetic
alterations in peripheral blood leukocytes or target tissues have been
described in association with a variety of exposures.231–233

Complicated by variability associated with age, ethnicity, and
diversity of cell types even in one organ or tissue.

Transcriptomics Whole transcriptome sequencing, microarray-
based gene expression assays

Global transcriptomics on blood or tissue biopsies can detect
dynamic gene-expression responses to altered exposome. Studies
have described transcriptional alterations associated with lifestyle,
dietary, and environmental exposures.234–237 Gene expression may
not reflect protein expression/function. Challenges exist in
experimental replication, deciphering alterations attributable to age
and gender, as well as interpretation of data from complex tissues
exposed to multiple exposures.

Proteomics Mass spectroscopy, protein microarrays,
biosensors, protein–protein interaction
mapping

Technologies are well established in biomarker discovery, with
promise of identifying protein markers of exposure, and may be
combined with metabolomics to generate exposome-wide association
studies for investigation of serum or tissue exposome biomarkers.238

Secretome-wide screens for extracellular protein-protein interactions
may provide ability to interrogate extracellular interactome.239

Protein levels may not correlate with protein function, and may need
to combine with kinome or other functional omics analysis.
Technical challenges exist in secretome interaction mapping.

Metabolomics Mass spectroscopy, proton nuclear magnetic
resonance

Metabolic profiles are determined by both endogenous and
environmental influences. It is applicable to biofluids (eg plasma,
urine) or tissue extracts. Metabolomic analysis has a capacity to
identify markers of exposure to specific dietary components and
environmental toxins, as well as characterize metabolic markers of
altered energy balance associated with physical activity and
obesity.223

Interactomics Interactome network mapping Interactomics integrates knowledge from molecular networks (eg
protein-protein interaction networks, gene regulatory networks,
metabolic networks) that underlie complex biological systems.179

Interactome network mapping may help identify interactome
perturbation resulting from adverse exposures.

Biophysics Spectroscopic adjuncts to endoscopy (eg
backscattering spectroscopy).

Feasibility of biophysical analyses has been demonstrated in pilot
studies.226,240,241 Optical technologies can detect nano/micro-
architechtural and microvascular correlates of molecular field
effect.227 At this time, the analysis is only applicable to
endoscopically accessible tissues.
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they predispose to the acquisition of specific
molecular aberrations and facilitate malignant trans-
formation, tumor growth, migration, and metastasis.
We believe that an etiologically focused, holistic,
approach to the field effect paradigm can lead to a
better understanding of cancer predisposition and
progression, which, in turn, can facilitate the design
of improved personalized cancer prevention and
treatment strategies.
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