Table 2 Performance of four different classifiers with three different feature selection methods in the modeling set
Classifier | Feature selection | AUC | Accuracy | Specificity | Sensitivity |
---|---|---|---|---|---|
LDA | WRST | 0.74±0.07 | 0.83±0.03 | 0.91±0.10 | 0.67±0.04 |
MRMR | 0.83±0.05 | 0.79±0.07 | 0.87±0.08 | 0.65±0.09 | |
RF | 0.77±0.05 | 0.81±0.03 | 0.91±0.10 | 0.62±0.06 | |
QDA | WRST | 0.87±0.02 | 0.88±0.02 | 0.93±0.10 | 0.78±0.04 |
MRMR | 0.81±0.04 | 0.84±0.05 | 0.88±0.14 | 0.76±0.04 | |
RF | 0.83±0.06 | 0.85±0.3 | 0.91±0.15 | 0.72±0.06 | |
RF | WRST | 0.81±0.05 | 0.77±0.04 | 0.87±0.06 | 0.59±0.02 |
MRMR | 0.84±0.03 | 0.81±0.04 | 0.87±0.06 | 0.68±0.06 | |
RF | 0.78±0.04 | 0.74±0.04 | 0.83±0.13 | 0.58±0.05 | |
SVM | WRST | 0.86±0.02 | 0.82±0.03 | 0.93±0.06 | 0.62±0.04 |
MRMR | 0.79±0.07 | 0.72±0.04 | 0.90±0.15 | 0.35±0.06 | |
RF | 0.84±0.02 | 0.79±0.02 | 0.92±0.08 | 0.53±0.03 |