Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature
  • Published:

Ten years of tension: single-molecule DNA mechanics

Abstract

The basic features of DNA were elucidated during the half-century following the discovery of the double helix. But it is only during the past decade that researchers have been able to manipulate single molecules of DNA to make direct measurements of its mechanical properties. These studies have illuminated the nature of interactions between DNA and proteins, the constraints within which the cellular machinery operates, and the forces created by DNA-dependent motors.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-molecule assays of replication12, 13.
Figure 2: The elastic behaviour of supercoiled DNA molecules49 forms the basis of single-molecule topoisomerase assays15, 16, 17.
Figure 3: Force generation by DNA-dependent motors.
Figure 4: Mechanically induced structural transitions in twist-constrained DNA.

References

  1. Kratky, O. & Porod, G. Röntgenuntersushung gelöster Fagenmoleküle. Rec. Trav. Chim. Pays-Bas 68, 1106–1123 (1949).

    Article  CAS  Google Scholar 

  2. Schellman, J. A. Flexibility of DNA. Biopolymers 13, 217–226 (1974).

    Article  CAS  Google Scholar 

  3. Goodman, S. D. & Nash, H. D. Functional replacement of a protein-induced bend in a DNA recombination site. Nature 341, 251–254 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Perez-Martin, J. & Espinosa, M. Protein-induced bending as a transcriptional switch. Science 260, 805–807 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Parvin, J. D., McCormick, R. J., Sharp, P. A. & Fisher, D. E. Pre-bending of a promoter sequence enhances affinity for the TATA-binding factor. Nature 373, 724–727 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Strauss, J. K. & Maher, L. J. III DNA bending by asymmetric phosphate neutralization. Science 266, 1829–1834 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Beuche, F. Physical Properties of Polymers (Interscience, New York, 1962).

    Google Scholar 

  8. Smith, S. B., Finzi, L. & Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122–1126 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Wang, M. D., Yin, H., Landick, R., Gelles, J. & Block, S. M. Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Bustamante, C., Marko, J. F., Siggia, E. D. & Smith, S. Entropic elasticity of lambda-phage DNA. Science 265, 1599–1600 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Wuite, G. J., Smith, S. B., Young, M., Keller, D. & Bustamante, C. Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 404, 103–106 (2000).

    Article  ADS  CAS  Google Scholar 

  13. Maier, B., Bensimon, D. & Croquette, V. Replication by a single DNA polymerase of a stretched single-stranded DNA. Proc. Natl Acad. Sci. USA 97, 12002–12007 (2000).

    Article  ADS  CAS  Google Scholar 

  14. Strick, T. R., Allemand, J. F., Bensimon, D., Bensimon, A. & Croquette, V. The elasticity of a single supercoiled DNA molecule. Science 271, 1835–1837 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Strick, T. R., Croquette, V. & Bensimon, D. Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature 404, 901–904 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Dekker, N. H. et al. The mechanism of type IA topoisomerases. Proc. Natl Acad. Sci. USA 99, 12126–12131 (2002).

    Article  ADS  CAS  Google Scholar 

  17. Crisona, N. J., Strick, T. R., Bensimon, D., Croquette, V. & Cozzarelli, N. R. Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements. Genes Dev. 14, 2881–2892 (2000).

    Article  CAS  Google Scholar 

  18. Essevaz-Roulet, B., Bockelmann, U. & Heslot, F. Mechanical separation of the complementary strands of DNA. Proc. Natl Acad. Sci. USA 94, 11935–11940 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Bockelmann, U., Thomen, P., Essevaz-Roulet, B., Viasnoff, V. & Heslot, F. Unzipping DNA with optical tweezers: high sequence sensitivity and force flips. Biophys. J. 82, 1537–1553 (2002).

    Article  CAS  Google Scholar 

  20. Bianco, P. R. et al. Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409, 374–378 (2001).

    Article  ADS  CAS  Google Scholar 

  21. Dohoney, K. M. & Gelles, J. χ-Sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules. Nature 409, 370–374 (2001).

    Article  ADS  CAS  Google Scholar 

  22. Koch, S. J., Shundrovsky, A., Jantzen, B. C. & Wang, M. D. Probing protein-DNA interactions by unzipping a single DNA double helix. Biophys. J. 83, 1098–1105 (2002).

    Article  ADS  CAS  Google Scholar 

  23. Yin, H. et al. Transcription against an applied force. Science 270, 1653–1657 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Davenport, R. J., Wuite, G. J., Landick, R. & Bustamante, C. Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 287, 2497–2500 (2000).

    Article  ADS  CAS  Google Scholar 

  26. Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    Article  ADS  CAS  Google Scholar 

  27. Forde, N. R., Izhaky, D., Woodcock, G. R., Wuite, G. J. & Bustamante, C. Using mechanical force to probe the mechanism of pausing and arrest during continuous elongation by Escherichia coli RNA polymerase. Proc. Natl Acad. Sci. USA 99, 11682–11687 (2002).

    Article  ADS  CAS  Google Scholar 

  28. Landick, R. RNA polymerase slides home: pause and termination site recognition. Cell 88, 741–744 (1997).

    Article  CAS  Google Scholar 

  29. Cui, Y. & Bustamante, C. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl Acad. Sci. USA 97, 127–132 (2000).

    Article  ADS  CAS  Google Scholar 

  30. Bennink, M. L. et al. Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers. Nature Struct. Biol. 8, 606–610 (2001).

    Article  CAS  Google Scholar 

  31. Brower-Toland, B. D. et al. Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proc. Natl Acad. Sci. USA 99, 1960–1965 (2002).

    Article  ADS  CAS  Google Scholar 

  32. Smith, D. E. et al. The bacteriophage φ29 portal motor can package DNA against a large internal force. Nature 413, 748–752 (2001).

    Article  ADS  CAS  Google Scholar 

  33. Calladine, C. R. & Drew, H. Understanding DNA (Academic, London, 1997).

    Google Scholar 

  34. Cluzel, P. et al. DNA: an extensible molecule. Science 271, 792–794 (1996).

    Article  ADS  CAS  Google Scholar 

  35. Leger, J. F. et al. Structural transitions of a twisted and stretched DNA molecule. Phys. Rev. Lett. 83, 1066–1069 (1999).

    Article  ADS  CAS  Google Scholar 

  36. Williams, M. C., Rouzina, I. & Bloomfield, V. A. Thermodynamics of DNA interactions from single molecule stretching experiments. Acc. Chem. Res. 35, 159–166 (2002).

    Article  CAS  Google Scholar 

  37. Wilkins, M. H. F., Gosling, R. G. & Seeds, W. E. Nucleic acid: an extensible molecule? Nature 167, 759–760 (1951).

    Article  ADS  CAS  Google Scholar 

  38. Strick, T. R., Allemand, J. F., Bensimon, D. & Croquette, V. Behavior of supercoiled DNA. Biophys. J. 74, 2016–2028 (1998).

    Article  ADS  CAS  Google Scholar 

  39. Allemand, J. F., Bensimon, D., Lavery, R. & Croquette, V. Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proc. Natl Acad. Sci. USA 95, 14152–14157 (1998).

    Article  ADS  CAS  Google Scholar 

  40. Pauling, L. & Corey, R. B. A proposed structure for the nucleic acids. Proc. Natl Acad. Sci. USA 39, 84–97 (1953).

    Article  ADS  CAS  Google Scholar 

  41. Sarkar, A., Leger, J. F., Chatenay, D. & Marko, J. F. Structural transitions in DNA driven by external force and torque. Phys. Rev. E 63, 051903-1–051903-10 (2001).

    Article  ADS  Google Scholar 

  42. Harada, Y. et al. Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase. Nature 409, 113–115 (2001).

    Article  ADS  CAS  Google Scholar 

  43. Liphardt, J., Onoa, B., Smith, S. B., Tinoco, I. J. & Bustamante, C. Reversible unfolding of single RNA molecules by mechanical force. Science 292, 733–737 (2001).

    Article  ADS  CAS  Google Scholar 

  44. Hegner, M. DNA Handles for single molecule experiments. Single Mol. 1, 139–144 (2000).

    Article  ADS  CAS  Google Scholar 

  45. Carrion-Vazquez, M. et al. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Prog. Biophys. Mol. Biol. 74, 63–91 (2000).

    Article  CAS  Google Scholar 

  46. Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    Article  ADS  CAS  Google Scholar 

  47. Yan, H., Zhang, X., Shen, Z. & Seeman, N. C. A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002).

    Article  ADS  CAS  Google Scholar 

  48. Mao, C., Sun, W., Shen, Z. & Seeman, N. C. A nanomechanical device based on the B–Z transition of DNA. Nature 397, 144–146 (1999).

    Article  ADS  CAS  Google Scholar 

  49. Strick, T., Allemand, J., Croquette, V. & Bensimon, D. Twisting and stretching single DNA molecules. Prog. Biophys. Mol. Biol. 74, 115–140 (2000).

    Article  CAS  Google Scholar 

  50. Alberts, B. et al. Molecular Biology of the Cell (Garland, New York, 2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos Bustamante, Zev Bryant or Steven B. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bustamante, C., Bryant, Z. & Smith, S. Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003). https://doi.org/10.1038/nature01405

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nature01405

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing