Abstract
The basic features of DNA were elucidated during the half-century following the discovery of the double helix. But it is only during the past decade that researchers have been able to manipulate single molecules of DNA to make direct measurements of its mechanical properties. These studies have illuminated the nature of interactions between DNA and proteins, the constraints within which the cellular machinery operates, and the forces created by DNA-dependent motors.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
De novo DNA-based catch bonds
Nature Chemistry Open Access 24 June 2024
-
Mechanochemical active ratchet
Scientific Reports Open Access 23 November 2023
-
Predicting scale-dependent chromatin polymer properties from systematic coarse-graining
Nature Communications Open Access 11 July 2023
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




References
Kratky, O. & Porod, G. Röntgenuntersushung gelöster Fagenmoleküle. Rec. Trav. Chim. Pays-Bas 68, 1106–1123 (1949).
Schellman, J. A. Flexibility of DNA. Biopolymers 13, 217–226 (1974).
Goodman, S. D. & Nash, H. D. Functional replacement of a protein-induced bend in a DNA recombination site. Nature 341, 251–254 (1989).
Perez-Martin, J. & Espinosa, M. Protein-induced bending as a transcriptional switch. Science 260, 805–807 (1993).
Parvin, J. D., McCormick, R. J., Sharp, P. A. & Fisher, D. E. Pre-bending of a promoter sequence enhances affinity for the TATA-binding factor. Nature 373, 724–727 (1995).
Strauss, J. K. & Maher, L. J. III DNA bending by asymmetric phosphate neutralization. Science 266, 1829–1834 (1994).
Beuche, F. Physical Properties of Polymers (Interscience, New York, 1962).
Smith, S. B., Finzi, L. & Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122–1126 (1992).
Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996).
Wang, M. D., Yin, H., Landick, R., Gelles, J. & Block, S. M. Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997).
Bustamante, C., Marko, J. F., Siggia, E. D. & Smith, S. Entropic elasticity of lambda-phage DNA. Science 265, 1599–1600 (1994).
Wuite, G. J., Smith, S. B., Young, M., Keller, D. & Bustamante, C. Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 404, 103–106 (2000).
Maier, B., Bensimon, D. & Croquette, V. Replication by a single DNA polymerase of a stretched single-stranded DNA. Proc. Natl Acad. Sci. USA 97, 12002–12007 (2000).
Strick, T. R., Allemand, J. F., Bensimon, D., Bensimon, A. & Croquette, V. The elasticity of a single supercoiled DNA molecule. Science 271, 1835–1837 (1996).
Strick, T. R., Croquette, V. & Bensimon, D. Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature 404, 901–904 (2000).
Dekker, N. H. et al. The mechanism of type IA topoisomerases. Proc. Natl Acad. Sci. USA 99, 12126–12131 (2002).
Crisona, N. J., Strick, T. R., Bensimon, D., Croquette, V. & Cozzarelli, N. R. Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements. Genes Dev. 14, 2881–2892 (2000).
Essevaz-Roulet, B., Bockelmann, U. & Heslot, F. Mechanical separation of the complementary strands of DNA. Proc. Natl Acad. Sci. USA 94, 11935–11940 (1997).
Bockelmann, U., Thomen, P., Essevaz-Roulet, B., Viasnoff, V. & Heslot, F. Unzipping DNA with optical tweezers: high sequence sensitivity and force flips. Biophys. J. 82, 1537–1553 (2002).
Bianco, P. R. et al. Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409, 374–378 (2001).
Dohoney, K. M. & Gelles, J. χ-Sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules. Nature 409, 370–374 (2001).
Koch, S. J., Shundrovsky, A., Jantzen, B. C. & Wang, M. D. Probing protein-DNA interactions by unzipping a single DNA double helix. Biophys. J. 83, 1098–1105 (2002).
Yin, H. et al. Transcription against an applied force. Science 270, 1653–1657 (1995).
Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).
Davenport, R. J., Wuite, G. J., Landick, R. & Bustamante, C. Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 287, 2497–2500 (2000).
Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).
Forde, N. R., Izhaky, D., Woodcock, G. R., Wuite, G. J. & Bustamante, C. Using mechanical force to probe the mechanism of pausing and arrest during continuous elongation by Escherichia coli RNA polymerase. Proc. Natl Acad. Sci. USA 99, 11682–11687 (2002).
Landick, R. RNA polymerase slides home: pause and termination site recognition. Cell 88, 741–744 (1997).
Cui, Y. & Bustamante, C. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl Acad. Sci. USA 97, 127–132 (2000).
Bennink, M. L. et al. Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers. Nature Struct. Biol. 8, 606–610 (2001).
Brower-Toland, B. D. et al. Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proc. Natl Acad. Sci. USA 99, 1960–1965 (2002).
Smith, D. E. et al. The bacteriophage φ29 portal motor can package DNA against a large internal force. Nature 413, 748–752 (2001).
Calladine, C. R. & Drew, H. Understanding DNA (Academic, London, 1997).
Cluzel, P. et al. DNA: an extensible molecule. Science 271, 792–794 (1996).
Leger, J. F. et al. Structural transitions of a twisted and stretched DNA molecule. Phys. Rev. Lett. 83, 1066–1069 (1999).
Williams, M. C., Rouzina, I. & Bloomfield, V. A. Thermodynamics of DNA interactions from single molecule stretching experiments. Acc. Chem. Res. 35, 159–166 (2002).
Wilkins, M. H. F., Gosling, R. G. & Seeds, W. E. Nucleic acid: an extensible molecule? Nature 167, 759–760 (1951).
Strick, T. R., Allemand, J. F., Bensimon, D. & Croquette, V. Behavior of supercoiled DNA. Biophys. J. 74, 2016–2028 (1998).
Allemand, J. F., Bensimon, D., Lavery, R. & Croquette, V. Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proc. Natl Acad. Sci. USA 95, 14152–14157 (1998).
Pauling, L. & Corey, R. B. A proposed structure for the nucleic acids. Proc. Natl Acad. Sci. USA 39, 84–97 (1953).
Sarkar, A., Leger, J. F., Chatenay, D. & Marko, J. F. Structural transitions in DNA driven by external force and torque. Phys. Rev. E 63, 051903-1–051903-10 (2001).
Harada, Y. et al. Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase. Nature 409, 113–115 (2001).
Liphardt, J., Onoa, B., Smith, S. B., Tinoco, I. J. & Bustamante, C. Reversible unfolding of single RNA molecules by mechanical force. Science 292, 733–737 (2001).
Hegner, M. DNA Handles for single molecule experiments. Single Mol. 1, 139–144 (2000).
Carrion-Vazquez, M. et al. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Prog. Biophys. Mol. Biol. 74, 63–91 (2000).
Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).
Yan, H., Zhang, X., Shen, Z. & Seeman, N. C. A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002).
Mao, C., Sun, W., Shen, Z. & Seeman, N. C. A nanomechanical device based on the B–Z transition of DNA. Nature 397, 144–146 (1999).
Strick, T., Allemand, J., Croquette, V. & Bensimon, D. Twisting and stretching single DNA molecules. Prog. Biophys. Mol. Biol. 74, 115–140 (2000).
Alberts, B. et al. Molecular Biology of the Cell (Garland, New York, 2002).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Bustamante, C., Bryant, Z. & Smith, S. Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003). https://doi.org/10.1038/nature01405
Issue date:
DOI: https://doi.org/10.1038/nature01405
This article is cited by
-
De novo DNA-based catch bonds
Nature Chemistry (2024)
-
Mechanochemical active ratchet
Scientific Reports (2023)
-
Storage of mechanical energy in DNA nanorobotics using molecular torsion springs
Nature Physics (2023)
-
Predicting scale-dependent chromatin polymer properties from systematic coarse-graining
Nature Communications (2023)
-
Multiscale tensegrity model for the tensile properties of DNA nanotubes
Applied Mathematics and Mechanics (2023)