Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Planning for smallpox outbreaks

Abstract

Mathematical models of viral transmission and control are important tools for assessing the threat posed by deliberate release of the smallpox virus and the best means of containing an outbreak. Models must balance biological realism against limitations of knowledge, and uncertainties need to be accurately communicated to policy-makers. Smallpox poses the particular challenge that key biological, social and spatial factors affecting disease spread in contemporary populations must be elucidated largely from historical studies undertaken before disease eradication in 1979. We review the use of models in smallpox planning within the broader epidemiological context set by recent outbreaks of both novel and re-emerging pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lane, H. C., Montagne, J. L. & Fauci, A. S. Bioterrorism: a clear and present danger. Nature Med. 7, 1271–1273 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. Dixon, C. W. Smallpox (Churchill, London, 1962)

    Google Scholar 

  3. Fenner, F., Henderson, D. A., Arita, I., Jezek, Z. & Ladnyi, I. D. Smallpox and its Eradication (WHO, Geneva, 1988)

    Google Scholar 

  4. US sounds alarm over smallpox weapon threat. Nature 399, 628 (1999)

  5. Meltzer, M. I., Damon, I., LeDuc, J. W. & Millar, J. D. Modeling potential responses to smallpox as a bioterrorist weapon. Emerg. Inf. Dis. 7, 959–969 (2001)

    Article  CAS  Google Scholar 

  6. Kaplan, E. H., Craft, D. L. & Wein, L. M. Emergency response to a smallpox attack: The case for mass vaccination. Proc. Natl Acad. Sci. USA 99, 10935–10940 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Halloran, M. E., Longini, I. M., Nizam, A. & Yang, Y. Containing bioterrorist smallpox. Science 298, 1428–1432 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. Bozzette, S. A. et al. A model for a smallpox-vaccination policy. N. Engl. J. Med. 348, 416–425 (2003)

    Article  PubMed  Google Scholar 

  9. Lane, J. M. & Goldstein, J. Evaluation of 21st-century risks of smallpox vaccination and policy options. Ann. Intern. Med. 138, 488–493 (2003)

    Article  PubMed  Google Scholar 

  10. Kemper, A. R., Davis, M. M. & Freed, G. L. Expected adverse events in a mass smallpox vaccination campaign. Eff. Clin. Pract. 5, 84–90 (2002)

    PubMed  Google Scholar 

  11. Anderson, R. M. & May, R. M. Directly transmitted infections diseases: control by vaccination. Science 215, 1053–1060 (1982)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  12. Grenfell, B. T., Bjornstad, O. N. & Kappey, J. Travelling waves and spatial hierarchies in measles epidemics. Nature 414, 716–723 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. Anderson, R. M., May, R. M. & McLean, A. R. Possible demographic impact of AIDS in developing countries. Nature 332, 228–234 (1988)

    Article  CAS  PubMed  Google Scholar 

  14. Ferguson, N. M., Donnelly, C. A. & Anderson, R. M. The foot-and-mouth epidemic in Great Britain: pattern of spread and impact of interventions. Science 292, 1155–1160 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. Keeling, M. J. et al. Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape. Science 294, 813–817 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. Keeling, M. J., Woolhouse, M. E., May, R. M., Davies, G. & Grenfell, B. T. Modelling vaccination strategies against foot-and-mouth disease. Nature 421, 136–142 (2003)

    Article  CAS  PubMed  Google Scholar 

  17. Ferguson, N. M., Donnelly, C. A. & Anderson, R. M. Transmission intensity and impact of control policies on the foot and mouth epidemic in Great Britain. Nature 413, 542–548 (2001)

    Article  CAS  PubMed  Google Scholar 

  18. Anderson, R. M. & May, R. M. Infectious Diseases of Humans: Dynamics and Control (Oxford Univ. Press, Oxford, 1991)

    Google Scholar 

  19. Wallinga, J., Levy-Bruhl, D., Gay, N. J. & Wachmann, C. H. Estimation of measles reproduction ratios and prospects for elimination of measles by vaccination in some Western European countries. Epidemiol. Infect. 127, 281–295 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gani, R. & Leach, S. Transmission potential of smallpox in contemporary populations. Nature 414, 748–751 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. Eichner, M. & Dietz, K. Transmission potential of smallpox: Estimates based on detailed data from an outbreak. Am. J. Epidemiol. 158, 110–117 (2003)

    Article  PubMed  Google Scholar 

  22. Bailey, N. T. J. The Mathematical Approach to Biology and Medicine (Wiley, London, 1967)

    Google Scholar 

  23. Koopman, J. Controlling smallpox. Science 298, 1342–1344 (2003)

    Article  Google Scholar 

  24. Eichner, M. Case isolation and contact tracing can prevent the spread of smallpox. Am. J. Epidemiol. 158, 118–128 (2003)

    Article  PubMed  Google Scholar 

  25. Lipsitch, M. et al. Transmission dynamics and control of severe acute respiratory syndrome. Science 300, 1966–1970 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Riley, S. et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science 300, 1961–1966 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. O'Neill, P. D. A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo methods. Math. Biosci. 180, 103–114 (2002)

    Article  MathSciNet  PubMed  Google Scholar 

  28. Mollison, D. Simplifying simple epidemic models. Nature 310, 224–225 (1984)

    Article  CAS  PubMed  Google Scholar 

  29. Bailey, N. T. J. & Duppenthaler, J. Sensitivity analysis in the modelling of infectious disease dynamics. Math. Biosci. 10, 113–131 (1980)

    MathSciNet  MATH  Google Scholar 

  30. Isham, V. & Medley, G. Models for Infectious Human Disease: Their Structure in Relation to Data (Cambridge Univ. Press, Cambridge, 1996)

    Book  Google Scholar 

Download references

Acknowledgements

We thank the Royal Society (N.M.F. and M.J.K.), MRC (N.M.F.), Howard Hughes Medical Institute (N.M.F.), BBSRC (M.J.K. and B.T.G.), the Wellcome Trust (B.T.G. and R.M.A.) and the Department of Health (W.J.E., R.G. and S.L.) for funding. The views expressed are not necessarily those of the Department of Health, but we thank staff of the Department for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil M. Ferguson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferguson, N., Keeling, M., John Edmunds, W. et al. Planning for smallpox outbreaks. Nature 425, 681–685 (2003). https://doi.org/10.1038/nature02007

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nature02007

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing