Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microfluidic diagnostic technologies for global public health

Abstract

The developing world does not have access to many of the best medical diagnostic technologies; they were designed for air-conditioned laboratories, refrigerated storage of chemicals, a constant supply of calibrators and reagents, stable electrical power, highly trained personnel and rapid transportation of samples. Microfluidic systems allow miniaturization and integration of complex functions, which could move sophisticated diagnostic tools out of the developed-world laboratory. These systems must be inexpensive, but also accurate, reliable, rugged and well suited to the medical and social contexts of the developing world.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disability-adjusted life years (DALYs) for infectious and parasitic diseases.
Figure 2: Two typical laboratories in mid-level healthcare centres in the developing world.
Figure 3: Rapid immunochromatographic strip (ICS) tests for sexually transmitted infections.
Figure 4: Schematic of an H-filter.
Figure 5: Example of an integrated disposable diagnostic card.
Figure 6: Quantification of a competitive immunoassay for phenytoin using surface plasmon resonance (SPR).

Similar content being viewed by others

References

  1. Dupuy, A., Lehmann, S. & Cristol, J. Protein biochip systems for the clinical laboratory. Clin. Chem. Lab. Med. 43, 1291–1302 (2005).

    CAS  PubMed  Google Scholar 

  2. Toner, M. & Irimia, D. Blood-on-a-chip. Annu. Rev. Biomed. Eng. 7, 77–103 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. von Lode, P. Point-of-care immunotesting: approaching the analytical performance of central laboratory methods. Clin. Biochem. 38, 591–606 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. World Bank World Development Report 1993: Investing in Health (Oxford Univ. Press, New York, 1993).

  5. Black, R. E., Morris, S. S. & Bryce, J. Where and why are 10 million children dying every year? Lancet 361, 2226–2234 (2003).

    Article  PubMed  Google Scholar 

  6. World Health Organization World Health Report 2002 — Reducing Risks, Promoting Healthy Life [online] <http://www.who.int/whr/2002/en/index.html> (2002).

  7. Morens, D. M., Folkers, G. K. & Fauci, A. S. The challenge of emerging and re-emerging infectious diseases. Nature 430, 242–249 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fauci, A. S. Infectious diseases: considerations for the 21st century. Clin. Infect. Dis. 32, 675–685 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. National Research Council Committee on Science and Technology in Foreign Assistance The Fundamental Role of Science and Technology in International Development: An Imperative for the US Agency for International Development (Washington DC, 2006).

  10. Becker, G. S., Philipson, T. J. & Soares, R. R. The quantity and quality of life and the evolution of world inequality. Am. Econ. Rev. 95, 277–291 (2005).

    Article  PubMed  Google Scholar 

  11. Murray, C. J. L. & Lopez, A. D. The Global Burden of Disease: a comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020 (Harvard Univ. Press, Cambridge, Massachusetts, 1996).

    Google Scholar 

  12. Conroy, J. Developing biodefense IVDs still a priority. IVD Technol. 12, 37–46 (2006).

    Google Scholar 

  13. UK Department for International Development The Challenge of TB and Malaria Control [online] <http://www.dfid.gov.uk/pubs/files/tb-malaria-control.pdf> (2005).

  14. Jalal, H., Stephen, H., Al-Suwaine, A., Sonnex, C. & Carne, C. The superiority of polymerase chain reaction over an amplified enzyme immunoassay for the detection of genital chlamydial infections. Sex. Transm. Infect. 82, 37–40 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boel, C. H., van Herk, C. M., Berretty, P. J., Onland, G. H. & van den Brule, A. J. Evaluation of conventional and real-time PCR assays using two targets for confirmation of results of the COBAS AMPLICOR Chlamydia trachomatis/Neisseria gonorrhoeae test for detection of Neisseria gonorrhoeae in clinical samples. J. Clin. Microbiol. 43, 2231–2235 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eickhoff, M. et al. Ultra-rapid detection of Chlamydia trachomatis by real-time PCR in the LightCycler using SYBR green technology or 5'-nuclease probes. Clin. Lab. 49, 217–225 (2003).

    CAS  PubMed  Google Scholar 

  17. Dittrich, P. S. & Manz, A. Single-molecule fluorescence detection in microfluidic channels—the Holy Grail in μTAS? Anal. Bioanal. Chem. 382, 1771–1782 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Rodriguez, W. R. et al. A microchip CD4 counting method for HIV monitoring in resource-poor settings. PLoS Med. 2, e182 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Price, C. P. Regular review: point of care testing. Brit. Med. J. 332, 1285–1288 (2001).

    Article  Google Scholar 

  20. Patterson, K. et al. Development of a rapid immunodiagnostic test for Haemophilus ducreyi. J. Clin. Microbiol. 40, 3694–3702 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Engler, K. H. et al. Immunochromatographic strip test for rapid detection of diphtheria toxin: description and multicenter evaluation in areas of low and high prevalence of diphtheria. J. Clin. Microbiol. 40, 80–83 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zarakolu, P., Buchanan, I., Tam, M., Smith, K. & Hook, E. W. Preliminary evaluation of an immunochromatographic strip test for specific Treponema pallidum antibodies. J. Clin. Microbiol. 40, 3064–3065 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Talbot, E. A. et al. Tuberculosis serodiagnosis in a predominantly HIV–infected population of hospitalized patients with cough, Botswana, 2002. Clin. Infect. Dis. 39, 1–7 (2004).

    Article  Google Scholar 

  24. Raj, A. A., Subramaniam, T., Raghuraman, S. & Abraham, P. Evaluation of an indigenously manufactured rapid immunochromatographic test for detection of HBsAg. Indian J. Pathol. Microbiol. 44, 413–414 (2001).

    CAS  PubMed  Google Scholar 

  25. Kaur, H., Dhanao, J. & Oberoi, A. Evaluation of rapid kits for detection of HIV, HBsAg and HCV infections. Indian J. Med. Sci. 54, 432–434 (2000).

    CAS  PubMed  Google Scholar 

  26. Parkes, R., Lo, T., Wong, Q., Isaac-Renton, J. L. & Byrne, S. K. Comparison of a nested polymerase chain reaction–restriction fragment length polymorphism method, the PATH antigen detection method, and microscopy for the detection and identification of malaria parasites. Can. J. Microbiol. 47, 903–907 (2001).

    CAS  PubMed  Google Scholar 

  27. Cates, W. Preserving fertility: an underappreciated aspect of sexual health. Network 23, no. 2 (2003).

  28. Tam, M. R. in Sexually Transmitted Diseases (eds Holmes, K. K. et al.) 1409–1420 (McGraw-Hill, New York, 1999).

    Google Scholar 

  29. Cayemittes, M., Hankins, C. & Tam, M. R. An AIDS test that travels well. IDRC Rep. 21, 27–28 (1993).

    CAS  PubMed  Google Scholar 

  30. Loutfy, M. R., Assmar, M., Hay Burgess, D. C. & Kain, K. C. Effects of viral hemorrhagic fever inactivation methods on the performance of rapid diagnostic tests for Plasmodium falciparum. J. Infect. Dis. 178, 1852–1855 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Mills, C. D., Hay Burgess, D. C., Taylor, H. J. & Kain, K. C. Evaluation of a rapid and inexpensive dipstick assay for the diagnosis of Plasmodium falciparum malaria. Bull. World Health Organ. 77, 553–559 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Labbe, A. C. et al. The performance and utility of rapid diagnostic assays for Plasmodium falciparum malaria in a field setting in the Lao People's Democratic Republic. Ann. Trop. Med. Parasitol. 95, 671–677 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Vickerman, P., Peeling, R. W., Watts, C. & Mabey, D. Detection of gonococcal infection : pros and cons of a rapid test. Mol. Diagn. 9, 175–179 (2005).

    PubMed  Google Scholar 

  34. Hix, J. et al. Development of a rapid enzyme immunoassay for the detection of retinol-binding protein. Am. J. Clin. Nutr. 79, 93–98 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Chinowsky, T. et al. Compact surface plasmon resonance imaging system for saliva-based medical diagnostics. Biosens. Bioelectron. (submitted).

  36. Fu, E., Chinowsky, T., Foley, J., Weinstein, J. & Yager, P. Characterization of a wavelength-tunable surface plasmon resonance microscope. Rev. Sci. Instrum. 75, 2300–2304 (2004).

    Article  ADS  CAS  Google Scholar 

  37. Fu, E., Foley, J. & Yager, P. Wavelength-tunable surface plasmon resonance microscope. Rev. Sci. Instrum. 74, 3182–3184 (2003).

    Article  ADS  CAS  Google Scholar 

  38. Yager, P., Holl, M. R., Weigl, B. H. & Brody, J. P. (Univ. Washington, 1998).

  39. Brody, J. P. & Yager, P. Diffusion-based extraction in a microfabricated device. Sens.Actuators A Phys. A58, 13–18 (1997).

    Article  Google Scholar 

  40. Brody, J. P., Yager, P., Goldstein, R. E. & Austin, R. H. Biotechnology at low Reynolds numbers. Biophys. J. 71, 3430–3441 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brody, J. P., Osborn, T. D., Forster, F. K. & Yager, P. A planar microfabricated fluid filter. Sens. Actuators A Phys. 704–708 (1996).

  42. Gascoyne, P. R. C. & Vykoukal, J. Particle separation by dielectrophoresis. Electrophoresis 23, 1973–1983 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gascoyne, P. et al. Microsample preparation by dielectrophoresis: isolation of malaria. Lab Chip 2, 70–75 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, X. B. et al. Cell separation by dielectrophoretic field-flow-fractionation. Analyt. Chem. 72, 832–839 (2000).

    Article  CAS  Google Scholar 

  45. Müller, T., Schnelle, T., Gradl, G., Shirley, S. G. & Fuhr, G. Microdevice for cell and particle separation using dielectrophoretic field-flow fractionation. J. Liq. Chromatogr. Relat. Technol. 23, 47–59 (2000).

    Article  Google Scholar 

  46. Hughes, M. AC electrokinetics applications for nanotechnology. Nanotechnology 11, 124–132 (2000).

    Article  ADS  CAS  Google Scholar 

  47. Rousselet, J., Markx, G. H. & Pethig, R. Separation of erythrocytes and latex beads by dielectrophoretic levitation and hyperlayer field-flow fractionation. Colloids Surf. A 140, 209–216 (1998).

    Article  CAS  Google Scholar 

  48. Cabrera, C. R., Macounová, K., Holl, M. R. & Yager, P. in IEEE 1st Annual Conference on Microtechnology in Medicine and Biology (ed. Beebe) (IEEE Press, Lyon, 2000).

    Google Scholar 

  49. Cabrera, C. R. & Yager, P. Continuous concentration of bacteria in a microfluidic flow cell using electrokinetic techniques. Electrophoresis 22, 355–362 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Macounová, K., Cabrera, C. R. & Yager, P. Concentration and separation of proteins in microfluidic channels on the basis of transverse IEF. Analyt. Chem. 73, 1627–1633 (2001).

    Article  Google Scholar 

  51. Cheng, S. B. et al. Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay. Analyt. Chem. 73, 1472–1479 (2001).

    Article  ADS  CAS  Google Scholar 

  52. Hawkins, K. R. & Yager, P. Nonlinear decrease of background fluorescence in polymer thin-films — a survey of materials and how they can complicate fluorescence detection in μTAS. Lab Chip 3, 248–252 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Yager, P. et al. in Micro Total Analysis Systems '98 (eds Harrison, D. J. & van den Berg, A.) 207–212 (Kluwer Academic, Dordrecht, Banff, 1998).

    Book  Google Scholar 

  54. Stroock, A. et al. Chaotic mixer for microchannels. Science 295, 647–651 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Garcia, E., Kusmanto, F., Finlayson, B. & Yager, P. in Micro Total Analysis Systems 2003 (eds Northrup, M. A., Jensen, K. F. & Harrison, D. J.) 551–554 (Mesa Monographs, Enschede, 2003).

    Google Scholar 

  56. Garcia, E., Kirkham, J. R., Hatch, A. V., Hawkins, K. R. & Yager, P. Controlled microfluidic reconstitution of functional protein from an anhydrous storage depot. Lab Chip 4, 78–82 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Guerrant, R. L. et al. Practice guidelines for the management of infectious diarrhea. Clin. Infect. Dis. 32, 331–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Weigl, B. et al. Fully integrated multiplexed lab-on-a-card assay for enteric pathogens. Proc. SPIE 6112, 1–11 (2006).

    ADS  Google Scholar 

  59. Tam, M. R. & Holmes, K. K. The STD diagnostic network: priorities for diagnosis of STDs in resource-poor settings. Ups. J. Med. Sci. Suppl. 50, 22–23 (1991).

    CAS  PubMed  Google Scholar 

  60. Perkins, M. D. & Kritski, A. L. Diagnostic testing in the control of tuberculosis. Bull. World Health Organ. 80, 512–513 (2002).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our colleagues at PATH, Micronics, Nanogen, Invetech, the University of Washington, Seattle, and Washington University in St Louis, Missouri, for their many contributions to ongoing and past projects, and our funding sources, currently including the National Institutes of Health (the National Institute of Allergy and Infectious Diseases, and the National Institute of Dental and Craniofacial Research) and the Bill & Melinda Gates Foundation. Thanks to colleagues at PATH for the photographs of laboratories in the developing world.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Yager.

Ethics declarations

Competing interests

P. Yager has stock options in Micronics Inc. and serves as a consultant to that company. He is also an inventor on University of Washington patents that have been licensed to Micronics. P.Y. receives research funding from PATH through a grant on which B. Weigl is Principal Investigator. B. Weigl has stock options in Micronics, Inc. He is also an inventor on patents that have been licensed to Micronics or are owned by Micronics. B.W. receives research funding from the University of Washington through a grant on which P.Y. is Principal Investigator.

Additional information

Author Information Reprints and permission information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yager, P., Edwards, T., Fu, E. et al. Microfluidic diagnostic technologies for global public health. Nature 442, 412–418 (2006). https://doi.org/10.1038/nature05064

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nature05064

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing