Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature
  • Published:

An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics

Past episodes of greenhouse warming provide insight into the coupling of climate and the carbon cycle and thus may help to predict the consequences of unabated carbon emissions in the future.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Response to massive carbon input.
Figure 2: Evolution of atmospheric CO2 levels and global climate over the past 65 million years.
Figure 3: Low-resolution marine stable-isotope records of the PETM and the carbon isotope excursion, together with the seafloor sediment CaCO3 record.

References

  1. Caldeira, K. & Wicket, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365–365 (2003).

    Article  CAS  ADS  Google Scholar 

  2. Archer, D. Fate of fossil fuel CO2 in geologic time. J. Geophys. Res. Oceans 110, C09S05, doi:10.1029/2004JC002625 (2005).

  3. Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison. J. Clim. 19, 3337–3353 (2006).

    Article  ADS  Google Scholar 

  4. Doney, S. C. & Schimel, D. S. Carbon and climate system coupling on timescales from the Precambrian to the Anthropocene. Annu. Rev. Environ. Resources 32, 14.1–14.36 (2007).

    Article  Google Scholar 

  5. Royer, D. L. CO2-forced climate thresholds during the Phanerozoic. Geochim. Cosmochim. Acta 70, 5665–5675 (2006).

    Article  CAS  ADS  Google Scholar 

  6. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Article  CAS  ADS  Google Scholar 

  7. Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth's surface-temperature. J. Geophys. Res. Oceans Atmos. 86, 9776–9782 (1981).

    Article  CAS  ADS  Google Scholar 

  8. Zachos, J. C. et al. Rapid acidification of the ocean during the Paleocene–Eocene Thermal Maximum. Science 308, 1611–1615 (2005).

    Article  CAS  ADS  Google Scholar 

  9. Lourens, L. J. et al. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435, 1083–1087 (2005).

    Article  CAS  ADS  Google Scholar 

  10. Svensen, H. et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 524–527 (2004).

    Article  Google Scholar 

  11. Dickens, G. R. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet. Sci. Lett. 213, 169–183 (2003).

    Article  CAS  ADS  Google Scholar 

  12. Kurtz, A. C., Kump, L. R., Arthur, M. A., Zachos, J. C. & Paytan, A. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18, 1090, doi:10.1029/2003PA000908 (2003).

    Article  ADS  Google Scholar 

  13. Higgins, J. A. & Schrag, D. P. Beyond methane: Towards a theory for the Paleocene–Eocene Thermal Maximum. Earth Planet. Sci. Lett. 245, 523–537 (2006).

    Article  CAS  ADS  Google Scholar 

  14. Wing, S. L., Gingerich, P. D., Schmitz, B. & Thomas, E. (eds). Causes and Consequences of Globally Warm Climates in the Early Paleocene (Geol. Soc. Am. Spec. Pap. 369, Boulder, Colorado, 2003).

    Google Scholar 

  15. Sluijs, A., Bowen, G. J., Brinkhuis, H., Lourens, L. J. & Thomas, E. in Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies (eds Williams, M. et al.) 323–349 (Geological Society of London, London, 2007).

    Book  Google Scholar 

  16. Thomas, D. J., Zachos, J. C., Bralower, T. J., Thomas, E. & Bohaty, S. Warming the fuel for the fire: Evidence for the thermal dissociation of methane hydrate during the Paleocene–Eocene Thermal Maximum. Geology 30, 1067–1070 (2002).

    Article  CAS  ADS  Google Scholar 

  17. Thomas, E. & Shackleton, N. J. in Correlation of the Early Paleogene in Northwest Europe (eds Knox, R. W. O. B., Corfield, R. M. & Dunay, R. E.) 401–441 (Geol. Soc. Lond. Spec. Publ. 101, London, 1996).

    Google Scholar 

  18. Pancost, R. D. et al. Increased terrestrial methane cycling at the Palaeocene–Eocene Thermal Maximum. Nature 449, 332–335 (2007).

    Article  CAS  ADS  Google Scholar 

  19. Zeebe, R. E. & Zachos, J. C. Reversed deep-sea carbonate ion basin gradient during Paleocene–Eocene Thermal Maximum. Paleoceanography 22, PA3201, doi:10.1029/2006PA001395 (2007).

    Article  ADS  Google Scholar 

  20. Sloan, L. C. & Pollard, D. Polar stratospheric clouds: A high latitude warming mechanism in an ancient greenhouse world. Geophys. Res. Lett. 25, 3517–3520 (1998).

    Article  ADS  Google Scholar 

  21. Beerling, D. J., Hewitt, C. N., Pyle, J. A. & Raven, J. A. Critical issues in trace gas biogeochemistry and global change. Phil. Trans. R. Soc. A 365, 1629–1642 (2007).

    Article  CAS  ADS  Google Scholar 

  22. Huber, M. & Sloan, L. C. Heat transport, deep waters, and thermal gradients: Coupled simulation of an Eocene greenhouse climate. Geophys. Res. Lett. 28, 3481–3484 (2001).

    Article  ADS  Google Scholar 

  23. Schmitz, B. & Pujalte, V. Abrupt increase in seasonal extreme precipitation at the Paleocene–Eocene boundary. Geology 35, 215–218 (2007).

    Article  CAS  ADS  Google Scholar 

  24. Lowenstein, T. K. & Demicco, R. V. Elevated Eocene atmospheric CO2 and its subsequent decline. Science 313, 1928–1928 (2006).

    Article  CAS  Google Scholar 

  25. Billups, K., Channell, J. E. T. & Zachos, J. Late Oligocene to early Miocene geochronology and paleoceanography from the subantarctic South Atlantic. Paleoceanography 17, U39–U49 (2002).

    Google Scholar 

  26. Bohaty, S. M. & Zachos, J. C. Significant Southern Ocean warming event in the late middle Eocene. Geology 31, 1017–1020 (2003).

    Article  ADS  Google Scholar 

  27. Palike, H. et al. The heartbeat of the Oligocene climate system. Science 314, 1894–1898 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Reprints and permissions information is available at http://npg.nature.com/reprints.

Correspondence should be addressed to J.C.Z. and R.E.Z. (jzachos@es.ucsc.edu; zeebe@hawaii.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zachos, J., Dickens, G. & Zeebe, R. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008). https://doi.org/10.1038/nature06588

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nature06588

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing