Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus

Abstract

Current human immunodeficiency virus-1 (HIV-1) vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in approximately 20% of HIV-1-infected individuals, and details of their generation could provide a blueprint for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from the time of infection. The mature antibody, CH103, neutralized approximately 55% of HIV-1 isolates, and its co-crystal structure with the HIV-1 envelope protein gp120 revealed a new loop-based mechanism of CD4-binding-site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the unmutated common ancestor of the CH103 lineage avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data determine the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies, and provide insights into strategies to elicit similar antibodies by vaccination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of neutralization breadth in donor CH505 and isolation of antibodies.
Figure 2: CH103 clonal family with time of appearance, VHDJH mutations and HIV-1 Env reactivity.
Figure 3: Structure of antibody CH103 in complex with the outer domain of HIV-1 gp120.
Figure 4: Sequence logo displaying variation in key regions of CH505 Env proteins.
Figure 5: Development of neutralization breadth in the CH103 clonal lineage.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

Data deposits

The GenBank accession numbers for 292 CH505 Env proteins are KC247375KC247667, and accessions for 459 VHDJH and 174 VLJL sequences of antibody members in the CH103 clonal lineage are KC575845KC576303 and KC576304KC576477, respectively. Atomic coordinates and structure factors for unbound CH103 Fab as well as CH103 Fab in complex with the ZM176.66 outer domain have been deposited with the Protein Data Bank under accession codes 4JAM for CH103 Fab, and 4JAN for the CH103–gp120 complex.

References

  1. Walker, L. M. et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326, 285–289 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walker, L. M. et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477, 466–470 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burton, D. R., Poignard, P., Stanfield, R. L. & Wilson, I. A. Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science 337, 183–186 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kwong, P. D. & Mascola, J. R. Human antibodies that neutralize HIV-1: identification, structures, and B cell ontogenies. Immunity 37, 412–425 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu, X. et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329, 856–861 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu, X. et al. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 333, 1593–1602 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou, T. et al. Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 329, 811–817 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sattentau, Q. J. & McMichael, A. J. New templates for HIV-1 antibody-based vaccine design. F1000 Biol. Rep. 2, 60 (2010)

    PubMed  PubMed Central  Google Scholar 

  9. Stamatatos, L. HIV vaccine design: the neutralizing antibody conundrum. Curr. Opin. Immunol. 24, 316–323 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. Haynes, B. F. et al. Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. Science 308, 1906–1908 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Haynes, B. F., Kelsoe, G., Harrison, S. C. & Kepler, T. B. B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nature Biotechnol. 30, 423–433 (2012)

    Article  CAS  Google Scholar 

  12. Mouquet, H. & Nussenzweig, M. C. Polyreactive antibodies in adaptive immune responses to viruses. Cell. Mol. Life Sci. 69, 1435–1445 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. Scheid, J. F. et al. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458, 636–640 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Chen, W. et al. All known cross-reactive HIV-1 neutralizing antibodies are highly divergent from germline and their elicitation may require prolonged periods of time. AIDS Res. Human Retrovirol. 24 Abstract DA03-03 (2008)

  15. Dimitrov, D. S. Therapeutic antibodies, vaccines and antibodyomes. MAbs 2, 347–356 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ma, B. J. et al. Envelope deglycosylation enhances antigenicity of HIV-1 gp41 epitopes for both broad neutralizing antibodies and their unmutated ancestor antibodies. PLoS Pathog. 7, e1002200 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pancera, M. et al. Crystal structure of PG16 and chimeric dissection with somatically related PG9: structure-function analysis of two quaternary-specific antibodies that effectively neutralize HIV-1. J. Virol. 84, 8098–8110 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiao, X. et al. Germline-like predecessors of broadly neutralizing antibodies lack measurable binding to HIV-1 envelope glycoproteins: implications for evasion of immune responses and design of vaccine immunogens. Biochem. Biophys. Res. Commun. 390, 404–409 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alam, S. M. et al. Differential reactivity of germ line allelic variants of a broadly neutralizing HIV-1 antibody to a gp41 fusion intermediate conformation. J. Virol. 85, 11725–11731 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bonsignori, M. et al. Analysis of a clonal lineage of HIV-1 envelope V2/V3 conformational epitope-specific broadly neutralizing antibodies and their inferred unmutated common ancestors. J. Virol. 85, 9998–10009 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mouquet, H. et al. Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature 467, 591–595 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Scheid, J. F. et al. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 333, 1633–1637 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoot, S. et al. Recombinant HIV envelope proteins fail to engage germline versions of anti-CD4-binding site bNAbs. PLoS Pathog. 9, e1003106 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Keele, B. F. et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc. Natl Acad. Sci. USA 105, 7552–7557 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Richman, D. D., Wrin, T., Little, S. J. & Petropoulos, C. J. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc. Natl Acad. Sci. USA 100, 4144–4149 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wei, X. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307–312 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Corti, D. et al. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals. PLoS ONE 5, e8805 (2010)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  28. Gray, E. S. et al. The neutralization breadth of HIV-1 develops incrementally over four years and is associated with CD4+ T cell decline and high viral load during acute infection. J. Virol. 85, 4828–4840 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Klein, F. et al. Broad neutralization by a combination of antibodies recognizing the CD4 binding site and a new conformational epitope on the HIV-1 envelope protein. J. Exp. Med. 209, 1469–1479 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lynch, R. M. et al. The development of CD4 binding site antibodies during HIV-1 infection. J. Virol. 86, 7588–7595 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moore, P. L., Gray, E. S. & Morris, L. Specificity of the autologous neutralizing antibody response. Curr. Opin. HIV AIDS 4, 358–363 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  32. Moore, P. L. et al. Potent and broad neutralization of HIV-1 subtype C by plasma antibodies targeting a quaternary epitope including residues in the V2 loop. J. Virol. 85, 3128–3141 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tomaras, G. D. et al. Polyclonal B cell responses to conserved neutralization epitopes in a subset of HIV-1-infected individuals. J. Virol. 85, 11502–11519 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liao, H. X. et al. Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated. J. Exp. Med. 208, 2237–2249 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tomaras, G. D. et al. Initial B-cell responses to transmitted human immunodeficiency virus type 1: virion-binding immunoglobulin M (IgM) and IgG antibodies followed by plasma anti-gp41 antibodies with ineffective control of initial viremia. J. Virol. 82, 12449–12463 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Scheid, J. F. et al. A method for identification of HIV gp140 binding memory B cells in human blood. J. Immunol. Methods 343, 65–67 (2009)

    Article  CAS  PubMed  Google Scholar 

  37. Seaman, M. S. et al. Tiered categorization of a diverse panel of HIV-1 Env pseudoviruses for assessment of neutralizing antibodies. J. Virol. 84, 1439–1452 (2010)

    Article  CAS  PubMed  Google Scholar 

  38. Boyd, S. D. et al. Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci. Transl. Med. 1, 12ra23 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Bonsignori, M. et al. Two distinct broadly neutralizing antibody specificities of different clonal lineages in a single HIV-1-infected donor: implications for vaccine design. J. Virol. 86, 4688–4692 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Haynes, B. F., Moody, M. A., Verkoczy, L., Kelsoe, G. & Alam, S. M. Antibody polyspecificity and neutralization of HIV-1: a hypothesis. Hum. Antibodies 14, 59–67 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Shingai, M. et al. Most rhesus macaques infected with the CCR5-tropic SHIV(AD8) generate cross-reactive antibodies that neutralize multiple HIV-1 strains. Proc. Natl Acad. Sci. USA 109, 19769–19774 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alam, S. M. et al. The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-HIV-1 envelope human monoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes. J. Immunol. 178, 4424–4435 (2007)

    Article  CAS  PubMed  Google Scholar 

  44. Malherbe, D. C. et al. Sequential immunization with a subtype B HIV-1 envelope quasispecies partially mimics the in vivo development of neutralizing antibodies. J. Virol. 85, 5262–5274 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alam, S. M. et al. Human immunodeficiency virus type 1 gp41 antibodies that mask membrane proximal region epitopes: antibody binding kinetics, induction, and potential for regulation in acute infection. J. Virol. 82, 115–125 (2008)

    Article  CAS  PubMed  Google Scholar 

  46. Montefiori, D. C. Evaluating neutralizing antibodies against HIV, SIV, and SHIV in luciferase reporter gene assays. Curr. Protoc. Immunol. Chapter 12 Unit 12.11 (2005)

  47. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007)

    CAS  PubMed  Google Scholar 

  48. Zar, J. H. Biostatistical Analysis (Pearson, 1974)

    Google Scholar 

  49. Junier, T. & Zdobnov, E. M. The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics 26, 1669–1670 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Moir, S. et al. Normalization of B cell counts and subpopulations after antiretroviral therapy in chronic HIV disease. J. Infect. Dis. 197, 572–579 (2008)

    Article  PubMed  Google Scholar 

  51. Liao, H. X. et al. High-throughput isolation of immunoglobulin genes from single human B cells and expression as monoclonal antibodies. J. Virol. Methods 158, 171–179 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liao, H. X. et al. Vaccine induction of antibodies against a structurally heterogeneous site of immune pressure within HIV-1 envelope protein variable regions 1 and 2. Immunity 38, 176–186 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. André, S. et al. Increased immune response elicited by DNA vaccination with a synthetic gp120 sequence with optimized codon usage. J. Virol. 72, 1497–1503 (1998)

    PubMed  PubMed Central  Google Scholar 

  54. Liao, H. X. et al. A group M consensus envelope glycoprotein induces antibodies that neutralize subsets of subtype B and C HIV-1 primary viruses. Virology 353, 268–282 (2006)

    Article  CAS  PubMed  Google Scholar 

  55. Montefiori, D. C. et al. Magnitude and breadth of the neutralizing antibody response in the RV144 and Vax003 HIV-1 vaccine efficacy trials. J. Infect. Dis. 206, 431–441 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang, J. et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491, 406–412 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wolinsky, S. M. et al. Response: HIV-1 evolution and disease progression. Science 274, 1010–1011 (1996)

    Article  CAS  PubMed  Google Scholar 

  58. Kwong, P. D. et al. Probability analysis of variational crystallization and its application to gp120, the exterior envelope glycoprotein of type 1 human immunodeficiency virus (HIV-1). J. Biol. Chem. 274, 4115–4123 (1999)

    Article  CAS  PubMed  Google Scholar 

  59. Kwon, Y. D. et al. Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops. Proc. Natl Acad. Sci. USA 109, 5663–5668 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bai, Y., Auperin, T. C. & Tong, L. The use of in situ proteolysis in the crystallization of murine CstF-77. Acta Crystallogr. F 63, 135–138 (2007)

    Article  ADS  CAS  Google Scholar 

  61. Mandel, C. R., Gebauer, D., Zhang, H. & Tong, L. A serendipitous discovery that in situ proteolysis is essential for the crystallization of yeast CPSF-100 (Ydh1p). Acta Crystallogr. F 62, 1041–1045 (2006)

    Article  CAS  Google Scholar 

  62. Otwinowski, Z. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307 (1997)

    Article  CAS  PubMed  Google Scholar 

  63. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  65. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  PubMed  CAS  Google Scholar 

  66. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  PubMed  CAS  Google Scholar 

  67. Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  68. Lütteke, T. & von der Lieth, C. W. pdb-care (PDB carbohydrate residue check): a program to support annotation of complex carbohydrate structures in PDB files. BMC Bioinformatics 5, 69 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kabat, E. A., Wu, T. T., Gottesman, K. S. & Foeller, C. Sequences of Proteins of Immunological Interest 5th edn (DIANE publishing, 1991)

    Google Scholar 

  70. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007)

    Article  CAS  PubMed  Google Scholar 

  71. DeLano, W. L. The PyMOL Molecular Graphics System http://www.pymol.org (DeLano Scientific, 2002)

Download references

Acknowledgements

This study was supported by the National Institutes of Allergy and Infectious Diseases (NIAID) and by intramural National Institutes of Health (NIH) support for the NIAID Vaccine Research Center, by grants from the NIH, NIAID, AI067854 (the Center for HIV/AIDS Vaccine Immunology) and AI100645 (the Center for Vaccine Immunology-Immunogen Discovery). The authors thank J. Pritchett, H. Chen, D. Pause, M. Cooper, E. Solomon, J. Blinn, K. Yarborough, E. Friberg, M. Smith, A. Hogan, C. Peckels, A. Foulger and T. Jeffries for technical assistance, and J. Kircherr and C. Andrews for project management. Use of sector 22 (Southeast Region Collaborative Access team) at the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under contract number W-31-109-Eng-38. The opinions herein are those of the authors and should not be construed as official or representing the views of the US Department of Health and Human Services, National Institute for Allergy and Infectious Diseases.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

H.-X.L., R.L., T.Z. and F.G. contributed equally to this work. H.-X.L. led production of antibodies and Env proteins, designed assays, analysed data and edited the paper; R.L. generated antibodies and performed assays; T.Z. co-led the structural biology team, performed structural studies, analysed data, and edited the paper; F.G. generated autologous Env sequences and viruses; S.M.A. performed surface plasmon reasonance analysis; S.D.B., A.Z.F., J.C.M. and K.M.R. performed pyrosequencing; C.A.S., Z.Z., J.Z. and L.S. analysed pyrosequences; S.G., P.H., B.T. and M.K. performed antibody and Env sequence analysis, and edited the paper; G.K. and G.Y. performed polyreactivity assays and analysis; S.-M.X. and D.C.M. performed neutralization assays and analysis; R.P., K.E.L. and R.M.S developed and performed ELISAs; K.A.S., M.C. and G.K. performed cohort development, patient recruitment, management and sampling; M.K.L. and L.M.T. performed neutralization assays; Y.C., F.C. and S.C. performed Env cloning and sequencing, S.M., X.D., M.G.J., S.S., B.Z. and A.Z. performed experiments related to crystallization, structure determination, and structural analysis; G.M.S. and B.H.H. generated autologous Env sequences and edited the paper; T.B.K. performed antibody gene sequence analysis and inferred ancestor and intermediate antibodies and edited the paper; P.D.K. co-led the structural biology team and collected and analysed data, and edited the paper; J.R.M. isolated antibodies, designed assays, analysed data, and edited the paper; B.F.H. designed and directed the study, read and interpreted antinuclear antibody assays, analysed data, and wrote and edited the paper.

Corresponding authors

Correspondence to Hua-Xin Liao or Barton F. Haynes.

Ethics declarations

Competing interests

H.-X.L., R.L., T.Z., F.G., S.D.B., B.H.H., T.B.K., J.R.M., P.D.K. and B.F.H. have filed patent applications on monoclonal antibodies and their sequences and/or CH505 Env proteins and their sequences used in this study.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-11 and Supplementary Tables 1-15. (PDF 8112 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, HX., Lynch, R., Zhou, T. et al. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 496, 469–476 (2013). https://doi.org/10.1038/nature12053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nature12053

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing