Extended Data Figure 2: Gastric organoid differentiation is efficient in multiple pluripotent stem cell lines.
From: Modelling human development and disease in pluripotent stem-cell-derived gastric organoids

a, Table comparing spheroid formation and characteristics between two human ES cell lines (H1 and H9) and one iPS cell line (72.3). Spheroid number was averaged from n = 8 wells per cell line; total cells per spheroid and epithelial composition were determined from whole mount staining (DAPI for total cell number and FOXA2 for epithelial cells) and quantification from n = 6 spheroids per cell line. Error bars represent s.d. b, Immunofluorescent staining of day-34 hGOs derived from ES cell line H1 and iPS cell line 72.3. iPS-cell-derived organoids exhibit the same morphological and molecular features of those derived from ES cells. c, Organ epithelial cell type quantification in day-34 hGOs. Greater than 90% of the epithelium is antral, indicated by PDX1 expression and lack of PTF1A expression, whereas less than 5% express markers associated with other organs derived from endoderm including CDX2 (intestine), albumin (liver) and p63 (squamous epithelium). Data shown are averages from n = 6 hGOs. d–g, Characterization of iPS cell line 72.3 used in a. d, e, iPS cell line 72.3 exhibited normal morphological characteristics of pluripotent stem-cell colonies, as compared to the H1 hESC line (d) and had a normal 46;XY karyotype (e). f, g, iPS cell line 72.3 expressed pluripotent markers OCT3/4 and NANOG (f), and demonstrated pluripotency by differentiation into endoderm, mesoderm, and ectoderm lineages in an in vivo teratoma assay (g). h, Human pluripotent stem-cell scorecard assay results demonstrating that ES cell line H1 and iPS cell line 72.3 have similar pluripotency and differentiation potential, and that iPS cell line 72.3 does not have a lineage bias. EB, differentiated as embryoid bodies for 14 days; UD, undifferentiated. Scale bars, 100 μm. Error bars represent s.d.