Extended Data Figure 8: SEC14L2 expression masks the effects of lipophilic oxidants and anti-oxidants on H77S.3/GLuc replication. | Nature

Extended Data Figure 8: SEC14L2 expression masks the effects of lipophilic oxidants and anti-oxidants on H77S.3/GLuc replication.

From: SEC14L2 enables pan-genotype HCV replication in cell culture

Extended Data Figure 8

a, b, SEC14L2 enhances transient replication of H77S.3, but not that of JFH-1 or J6/JFH1. Empty-vector- and SEC14L2-expressing Huh-7.5 cells were electroporated with the indicated viral RNAs lacking GLuc insertions. a, Intracellular and b, extracellular RNA levels were measured 6 days after electroporation. Results are plotted as fold change from empty vector control. c–f, The pro-viral effects of various lipophilic antioxidants on H77S.3/GLuc replication were suppressed in the presence of SEC14L2. c, γ-tocopherol, d, α-tocopheryl succinate, e, α-tocopheryl quinone, and f, sphingosine kinase inhibitor (SKI) were added to Huh-7.5 cells 20 h before transfection with H77S.3/GLuc. Transfections were carried out in the fresh medium lacking these compounds. 6 h after transfection, cells were again fed with each compound and the GLuc expression was measured at 72 h post-transfection. The results are presented as fold change from untreated cells. g–l, SEC14L2 expression suppressed the inhibitory effect of lipophilic oxidants and direct-acting antivirals, but not that of the HCV host factor inhibitors, on H77S.3/GLuc replication. g, Docosahexaenoic acid (oxidant); h, linoleic acid (oxidant); i, interferon-β (IFN-β); j, CSA (cyclosporine A); k, danoprevir (NS3 protease inhibitor) and l, 2′CMeA (NS5B polymerase inhibitor) were added to Huh-7.5 cells 6 h after transfection with H77S.3/GLuc (and Jc1/GLuc in the case of Danoprevir and 2′CMeA) and the secreted GLuc activity at 72 h post-transfection was measured. The results are plotted as percentage of inhibition relative to the untreated cells. All results in this figure represent mean ± s.d. of two replicate experiments.

Back to article page