Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Analyzing 'omics data using hierarchical models

Hierarchical models provide reliable statistical estimates for data sets from high-throughput experiments where measurements vastly outnumber experimental samples.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hierarchical modeling.

References

  1. Ramsey, F.L. & Schafer, D.W. The Statistical Sleuth: A Course in Methods of Data Analysis (Duxbury/Thomson Learning; 2002).

    Google Scholar 

  2. Hastie, T., Tibshirani, R. & Friedman, J.H. The Elements of Statistical Learning, edn. 2 (Springer; 2009).

    Book  Google Scholar 

  3. Tibshirani, R. J. Roy Stat. Soc. B 58, 267–288 (1996).

    Google Scholar 

  4. Smyth, G.K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, 3 (2004).

    Article  Google Scholar 

  5. Gelman, A., Carlin, J.B., Stern, H.S. & Rubin, D.B. Bayesian Data Analysis edn. 2 (Chapman & Hall/CRC; 2004).

    Google Scholar 

  6. Beaumont, M.A. & Rannala, B. Nat. Rev. Genet. 5, 251–261 (2004).

    Article  CAS  Google Scholar 

  7. Ji, H. & Wong, W.H. Bioinformatics 21, 3629–3636 (2005).

    Article  CAS  Google Scholar 

  8. Sartor, M.A. et al. BMC Bioinformatics 7, 538 (2006).

    PubMed  Google Scholar 

  9. Chen, G.K. & Witte, J.S. Am. J. Hum. Genet. 81, 397–404 (2007).

    Article  CAS  Google Scholar 

  10. Zhou, Q. & Wong, W.H. Proc. Natl. Acad. Sci. USA 101, 12114–12119 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongkai Ji or X Shirley Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, H., Liu, X. Analyzing 'omics data using hierarchical models. Nat Biotechnol 28, 337–340 (2010). https://doi.org/10.1038/nbt.1619

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt.1619

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research