Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficient mucosal vaccination mediated by the neonatal Fc receptor

Abstract

Almost all infectious diseases are initiated at mucosal surfaces, yet intramuscular or subcutaneous vaccination usually provides only minimal protection at sites of infection owing to suboptimal activation of the mucosal immune system. The neonatal Fc receptor (FcRn) mediates the transport of IgG across polarized epithelial cells lining mucosal surfaces. We mimicked this process by fusing a model antigen, herpes simplex virus type-2 (HSV-2) glycoprotein gD, to an IgG Fc fragment. Intranasal immunization, together with the adjuvant CpG, completely protected wild-type, but not FcRn knockout, mice after intravaginal challenge with virulent HSV-2 186. This immunization strategy induced efficient mucosal and systemic antibody, B- and T-cell immune responses, with stable protection for at least 6 months after vaccination in most of the immunized animals. The FcRn-IgG transcellular transport pathway may provide a general delivery route for subunit vaccines against many mucosal pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FcRn-targeted mucosal vaccination induces enhanced gD-specific antibody and T-cell responses.
Figure 2: Local immune responses induced by FcRn-targeted mucosal immunization.
Figure 3: FcRn-targeted mucosal immunization provides protective immunity to intravaginal challenge with virulent HSV-2 186.
Figure 4: Increased memory immune response in FcRn-targeted mucosal immunization.

Similar content being viewed by others

References

  1. Neutra, M.R. & Kozlowski, P.A. Mucosal vaccines: the promise and the challenge. Nat. Rev. Immunol. 6, 148–158 (2006).

    Article  CAS  Google Scholar 

  2. Holmgren, J. & Czerkinsky, C. Mucosal immunity and vaccines. Nat. Med. 11 Suppl S45–S53 (2005).

    Article  CAS  Google Scholar 

  3. McGhee, J.R. et al. The mucosal immune system: from fundamental concepts to vaccine development. Vaccine 10, 75–88 (1992).

    Article  CAS  Google Scholar 

  4. Gallichan, W.S. & Rosenthal, K.L. Long-term immunity and protection against herpes simplex virus type 2 in the murine female genital tract after mucosal but not systemic immunization. J. Infect. Dis. 177, 1155–1161 (1998).

    Article  CAS  Google Scholar 

  5. Neutra, M.R., Mantis, N.J. & Kraehenbuhl, J.-P. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat. Immunol. 2, 1004–1009 (2001).

    Article  CAS  Google Scholar 

  6. Nochi, T. et al. A novel M cell-specific carbohydrate-targeted mucosal vaccine effectively induces antigen-specific immune responses. J. Exp. Med. 204, 2789–2796 (2007).

    Article  CAS  Google Scholar 

  7. Ghetie, V. & Ward, E.S. Multiple roles for the major histocompatibility complex class I-related receptor FcRn. Annu. Rev. Immunol. 18, 739–766 (2000).

    Article  CAS  Google Scholar 

  8. He, W. et al. FcRn-mediated antibody transport across epithelial cells revealed by electron tomography. Nature 455, 542–546 (2008).

    Article  CAS  Google Scholar 

  9. Dickinson, B.L. et al. Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J. Clin. Invest. 104, 903–911 (1999).

    Article  CAS  Google Scholar 

  10. Roopenian, D.C. & Akilesh, S. FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol. 7, 715–725 (2007).

    Article  CAS  Google Scholar 

  11. Baker, K. et al. Immune and non-immune functions of the (not so) neonatal Fc receptor, FcRn. Semin. Immunopathol. 31, 223–236 (2009).

    Article  CAS  Google Scholar 

  12. Yoshida, M. et al. Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria. J. Clin. Invest. 116, 2142–2151 (2006).

    Article  CAS  Google Scholar 

  13. Kim, J.K., Tsen, M.F., Ghetie, V. & Ward, E.S. Localization of the site of the murine IgG1 molecule that is involved in binding to the murine intestinal Fc receptor. Eur. J. Immunol. 24, 2429–2434 (1994).

    Article  CAS  Google Scholar 

  14. Duncan, A.R. & Winter, G. The binding site for C1q on IgG. Nature 332, 738–740 (1988).

    Article  CAS  Google Scholar 

  15. McCarthy, K.M., Yoong, Y. & Simister, N.E. Bidirectional transcytosis of IgG by the rat neonatal Fc receptor expressed in a rat kidney cell line: a system to study protein transport across epithelia. J. Cell Sci. 113, 1277–1285 (2000).

    CAS  PubMed  Google Scholar 

  16. Roopenian, D.C. et al. The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J. Immunol. 170, 3528–3533 (2003).

    Article  CAS  Google Scholar 

  17. van Duin, D., Medzhitov, R. & Shaw, A.C. Triggering TLR signaling in vaccination. Trends Immunol. 27, 49–55 (2006).

    Article  CAS  Google Scholar 

  18. Wolf, A.J. et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J. Exp. Med. 205, 105–115 (2008).

    Article  CAS  Google Scholar 

  19. Moyron-Quiroz, J.E. et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat. Med. 10, 927–934 (2004).

    Article  CAS  Google Scholar 

  20. Parr, E.L. & Parr, M.B. Immunoglobulin G is the main protective antibody in mouse vaginal secretions after vaginal immunization with attenuated herpes simplex virus type 2. J. Virol. 71, 8109–8115 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Milligan, G.N., Dudley-McClain, K.L., Chu, C.F. & Young, C.G. Efficacy of genital T cell responses to herpes simplex virus type 2 resulting from immunization of the nasal mucosa. Virology 318, 507–515 (2004).

    Article  CAS  Google Scholar 

  22. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  Google Scholar 

  23. Bernasconi, N.L., Traggiai, E. & Lanzavecchia, A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298, 2199–2202 (2002).

    Article  CAS  Google Scholar 

  24. Dooms, H., Wolslegel, K., Lin, P. & Abbas, A.K. Interleukin-2 enhances CD4+ T cell memory by promoting the generation of IL-7Rα–expressing cells. J. Exp. Med. 204, 547–557 (2007).

    Article  CAS  Google Scholar 

  25. Mi, W. et al. Targeting the neonatal Fc receptor for antigen delivery using engineered Fc fragments. J. Immunol. 181, 7550–7561 (2008).

    Article  CAS  Google Scholar 

  26. Rawool, D.B. et al. Utilization of Fc receptors as a mucosal vaccine strategy against an intracellular bacterium, Francisella tularensis. J. Immunol. 180, 5548–5557 (2008).

    Article  CAS  Google Scholar 

  27. Gallichan, W.S. et al. Intranasal immunization with CpG oligodeoxynucleotides as an adjuvant dramatically increases IgA and protection against herpes simplex virus-2 in the genital tract. J. Immunol. 166, 3451–3457 (2001).

    Article  CAS  Google Scholar 

  28. Kwant, A. & Rosenthal, K.L. Intravaginal immunization with viral subunit protein plus CpG oligodeoxynucleotides induces protective immunity against HSV-2. Vaccine 22, 3098–3104 (2004).

    Article  CAS  Google Scholar 

  29. Tengvall, S., Lundqvist, A., Eisenberg, R.J., Cohen, G.H. & Harandi, A.M. Mucosal administration of CpG oligodeoxynucleotide elicits strong CC and CXC chemokine responses in the vagina and serves as a potent Th1-tilting adjuvant for recombinant gD2 protein vaccination against genital herpes. J. Virol. 80, 5283–5291 (2006).

    Article  CAS  Google Scholar 

  30. Lindqvist, M., Persson, J., Thörn, K. & Harandi, A.M. The mucosal adjuvant effect of alpha-galactosylceramide for induction of protective immunity to sexually transmitted viral infection. J. Immunol. 182, 6435–6443 (2009).

    Article  CAS  Google Scholar 

  31. ChangLai, S.P., Hung, W.T. & Liao, K.K. Detecting alveolar epithelial injury following volatile anesthetics by (99m)Tc DTPA radioaerosol inhalation lung scan. Respiration 66, 506–510 (1999).

    Article  CAS  Google Scholar 

  32. Lin, H. et al. Enhancing effect of surfactants on fexofenadine.HCl transport across the human nasal epithelial cell monolayer. Int. J. Pharm. 330, 23–31 (2007).

    Article  CAS  Google Scholar 

  33. Kodama, S., Abe, N., Hirano, T. & Suzuki, M. Safety and efficacy of nasal application of CpG oligodeoxynucleotide as a mucosal adjuvant. Laryngoscope 116, 331–335 (2006).

    Article  CAS  Google Scholar 

  34. Kelsall, B.L. & Rescigno, M. Mucosal dendritic cells in immunity and inflammation. Nat. Immunol. 5, 1091–1095 (2004).

    Article  CAS  Google Scholar 

  35. Yoshida, M. et al. Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 20, 769–783 (2004).

    Article  CAS  Google Scholar 

  36. Liu, X. et al. Activation of the JAK/STAT-1 signaling pathway by IFN-gamma can down-regulate functional expression of the MHC class I-related neonatal Fc receptor for IgG. J. Immunol. 181, 449–463 (2008).

    Article  CAS  Google Scholar 

  37. Mestecky, J., Russell, J.N.W. & Elson, C.O. Perspectives on mucosal vaccines: is mucosal tolerance a barrier? J. Immunol. 179, 5633–5638 (2007).

    Article  CAS  Google Scholar 

  38. Milligan, G.N., Bernstein, D.I. & Bourne, N. T lymphocytes are required for protection of the vaginal mucosae and sensory ganglia of immune mice against reinfection with herpes simplex virus type 2. J. Immunol. 160, 6093–6100 (1998).

    CAS  PubMed  Google Scholar 

  39. Van den Broeck, W., Derore, A. & Simoens, P. Anatomy and nomenclature of murine lymph nodes: descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J. Immunol. Methods 312, 12–19 (2006).

    Article  CAS  Google Scholar 

  40. Ye, L. et al. The MHC class II-associated invariant chain interacts with the neonatal Fc gamma receptor and modulates its trafficking to endosomal/lysosomal compartments. J. Immunol. 181, 2572–2585 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Rosenthal and A. Harandi for their discussions of mucosal antigen transport and immunization. We thank G.J. Letchworth for helpful discussions and critical reading of the manuscript. We are grateful to N.E. Simister, Brandeis University, for supplying us with inner medullary collecting duct–FcRn cell line. We acknowledge the receipt of HSV-2 186 strain from L.R. Stanberry, Columbia University, and HSV gD plasmids from P. Spear, Northwestern University. We also acknowledge the helpful discussions with D. Mosser, D. Perez, S. Samal and W. Song. We are most grateful for the technical help from Y. Wang, L. Lu, X. Liu, S. Palaniyandi and Z. Li. This work was supported in part by the National Institutes of Health grants AI65892, AI67965, AI73139 (to X.Z.), DK56597 (to D.C.R.) and MAES competitive grants from the University of Maryland (to X.Z.).

Author information

Authors and Affiliations

Authors

Contributions

L.Y. and X.Z. designed and performed experiments, analyzed data and wrote the paper. R.Z. and Y.B. conducted experiments. D.C.R. interpreted data and made editorial suggestions.

Corresponding author

Correspondence to Xiaoping Zhu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–10 (PDF 1054 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, L., Zeng, R., Bai, Y. et al. Efficient mucosal vaccination mediated by the neonatal Fc receptor. Nat Biotechnol 29, 158–163 (2011). https://doi.org/10.1038/nbt.1742

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt.1742

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology