Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation

An Erratum to this article was published on 05 February 2016

This article has been updated

Abstract

RNA-seq experiments generate reads derived not only from mature RNA transcripts but also from pre-mRNA. Here we present a computational approach called exon-intron split analysis (EISA) that measures changes in mature RNA and pre-mRNA reads across different experimental conditions to quantify transcriptional and post-transcriptional regulation of gene expression. We apply EISA to 17 diverse data sets to show that most intronic reads arise from nuclear RNA and changes in intronic read counts accurately predict changes in transcriptional activity. Furthermore, changes in post-transcriptional regulation can be predicted from differences between exonic and intronic changes. EISA reveals both transcriptional and post-transcriptional contributions to expression changes, increasing the amount of information that can be gained from RNA-seq data sets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of exonic and intronic changes for single genes under controlled transcriptional and post-transcriptional perturbations.
Figure 2: Intronic changes reflect changes in transcriptional activity.
Figure 3: EISA recovers dominant role of transcriptional changes in neuronal differentiation.
Figure 4: EISA recovers post-transcriptional mechanism of miRNAs.
Figure 5: Quantification of transcriptional and post-transcriptional changes.
Figure 6: Read depth versus the number of quantifiable genes.

Similar content being viewed by others

Change history

  • 08 July 2015

    In the version of this article initially published online, several errors appeared in the HTML version. In the section “EISA recovers the role of transcription during neurogenesis,” the expression “(t1/2 = 1/α)” should have read “(t1/2 ~ 1/α)” in the sentence “mRNA half-life, on the other hand, is inversely proportional to the degradation rate (t1/2 = 1/α).” In the Online Methods, “Analysis of circadian dynamics data sets,” the symbol “<-” was given as “≤” in two cases and as “≤<” in one case; the formulas “coeffs ≤ lm(y ~ cbind(cos(w*t),-sin(w*t)))$coefficients”; “C ≤< sqrt(coeffs[2]^2 + coeffs[3]^2)”; “ϕ ≤ atan2(coeffs[3],coeffs[2])” should have been “coeffs <- lm(y ~ cbind(cos(w*t),-sin(w*t)))$coefficients”; “C <- sqrt(coeffs[2]^2 + coeffs[3]^2)”; “ϕ <- atan2(coeffs[3],coeffs[2]).” In addition, the corresponding authors are Dimos Gaidatzis, Lukas Burger and Michael Stadler, rather than Dimos Gaidatzis, Lukas Burger and Maria Florescu. The errors have been corrected in HTML version of this article.

References

  1. Core, L.J., Waterfall, J.J. & Lis, J.T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    Article  CAS  Google Scholar 

  2. Wuarin, J. & Schibler, U. Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing. Mol. Cell. Biol. 14, 7219–7225 (1994).

    Article  CAS  Google Scholar 

  3. Khodor, Y.L. et al. Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila. Genes Dev. 25, 2502–2512 (2011).

    Article  CAS  Google Scholar 

  4. Zaghlool, A. et al. Efficient cellular fractionation improves RNA sequencing analysis of mature and nascent transcripts from human tissues. BMC Biotechnol. 13, 99 (2013).

    Article  CAS  Google Scholar 

  5. Wang, Y. et al. Precision and functional specificity in mRNA decay. Proc. Natl. Acad. Sci. USA 99, 5860–5865 (2002).

    Article  CAS  Google Scholar 

  6. Sultan, M. et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321, 956–960 (2008).

    Article  CAS  Google Scholar 

  7. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  Google Scholar 

  8. Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  Google Scholar 

  9. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012).

    Article  CAS  Google Scholar 

  10. Guttman, M. et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol. 28, 503–510 (2010).

    Article  CAS  Google Scholar 

  11. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012).

    Article  CAS  Google Scholar 

  12. Soneson, C. & Delorenzi, M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics 14, 91 (2013).

    Article  Google Scholar 

  13. Steijger, T. et al. Assessment of transcript reconstruction methods for RNA-seq. Nat. Methods 10, 1177–1184 (2013).

    Article  CAS  Google Scholar 

  14. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  Google Scholar 

  15. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  Google Scholar 

  16. Grabherr, M.G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    Article  CAS  Google Scholar 

  17. Birol, I. et al. De novo transcriptome assembly with ABySS. Bioinformatics 25, 2872–2877 (2009).

    Article  CAS  Google Scholar 

  18. Katz, Y., Wang, E.T., Airoldi, E.M. & Burge, C.B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods 7, 1009–1015 (2010).

    Article  CAS  Google Scholar 

  19. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  Google Scholar 

  20. Law, C.W., Chen, Y., Shi, W. & Smyth, G.K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    Article  Google Scholar 

  21. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  Google Scholar 

  22. DeLuca, D.S. et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics 28, 1530–1532 (2012).

    Article  CAS  Google Scholar 

  23. Zeisel, A. et al. Coupled pre-mRNA and mRNA dynamics unveil operational strategies underlying transcriptional responses to stimuli. Mol. Syst. Biol. 7, 529 (2011).

    Article  Google Scholar 

  24. Ameur, A. et al. Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain. Nat. Struct. Mol. Biol. 18, 1435–1440 (2011).

    Article  CAS  Google Scholar 

  25. Gray, J.M. et al. SnapShot-Seq: a method for extracting genome-wide, in vivo mRNA dynamics from a single total RNA sample. PLoS ONE 9, e89673 (2014).

    Article  Google Scholar 

  26. Hendriks, G.J., Gaidatzis, D., Aeschimann, F. & Grosshans, H. Extensive oscillatory gene expression during C. elegans larval development. Mol. Cell 53, 380–392 (2014).

    Article  CAS  Google Scholar 

  27. Reddy, T.E. et al. Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation. Genome Res. 19, 2163–2171 (2009).

    Article  CAS  Google Scholar 

  28. Bhatt, D.M. et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150, 279–290 (2012).

    Article  CAS  Google Scholar 

  29. Menet, J.S., Rodriguez, J., Abruzzi, K.C. & Rosbash, M. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. Elife 1, e00011 (2012).

    Article  Google Scholar 

  30. Storch, K.F. et al. Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78–83 (2002).

    Article  CAS  Google Scholar 

  31. Koike, N. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338, 349–354 (2012).

    Article  CAS  Google Scholar 

  32. Vollmers, C. et al. Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab. 16, 833–845 (2012).

    Article  CAS  Google Scholar 

  33. Jin, F. et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503, 290–294 (2013).

    Article  CAS  Google Scholar 

  34. Steiger, J.H. Tests for comparing elements of a correlation matrix. Psychol. Bull. 87, 245–251 (1980).

    Article  Google Scholar 

  35. Bibel, M. et al. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat. Neurosci. 7, 1003–1009 (2004).

    Article  CAS  Google Scholar 

  36. Tippmann, S.C. et al. Chromatin measurements reveal contributions of synthesis and decay to steady-state mRNA levels. Mol. Syst. Biol. 8, 593 (2012).

    Article  Google Scholar 

  37. Stadler, M.B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    CAS  Google Scholar 

  38. Tani, H. et al. Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res. 22, 947–956 (2012).

    Article  CAS  Google Scholar 

  39. Lim, L.P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    Article  CAS  Google Scholar 

  40. Krützfeldt, J. et al. Silencing of microRNAs in vivo with ′antagomirs′. Nature 438, 685–689 (2005).

    Article  Google Scholar 

  41. Guo, H., Ingolia, N.T., Weissman, J.S. & Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

    Article  CAS  Google Scholar 

  42. Nam, J.W. et al. Global analyses of the effect of different cellular contexts on microRNA targeting. Mol. Cell 53, 1031–1043 (2014).

    Article  CAS  Google Scholar 

  43. Karlić, R., Chung, H.R., Lasserre, J., Vlahovicek, K. & Vingron, M. Histone modification levels are predictive for gene expression. Proc. Natl. Acad. Sci. USA 107, 2926–2931 (2010).

    Article  Google Scholar 

  44. Cheng, C. & Gerstein, M. Modeling the relative relationship of transcription factor binding and histone modifications to gene expression levels in mouse embryonic stem cells. Nucleic Acids Res. 40, 553–568 (2012).

    Article  CAS  Google Scholar 

  45. Dong, X. et al. Modeling gene expression using chromatin features in various cellular contexts. Genome Biol. 13, R53 (2012).

    Article  CAS  Google Scholar 

  46. Sood, P., Krek, A., Zavolan, M., Macino, G. & Rajewsky, N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc. Natl. Acad. Sci. USA 103, 2746–2751 (2006).

    Article  CAS  Google Scholar 

  47. Farh, K.K. et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005).

    Article  CAS  Google Scholar 

  48. Bussemaker, H.J., Li, H. & Siggia, E.D. Regulatory element detection using correlation with expression. Nat. Genet. 27, 167–174 (2001).

    Article  CAS  Google Scholar 

  49. Cui, P. et al. A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing. Genomics 96, 259–265 (2010).

    Article  CAS  Google Scholar 

  50. Kim, T.K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    Article  CAS  Google Scholar 

  51. Gaidatzis, D., Lerch, A., Hahne, F. & Stadler, M.B. QuasR: quantification and annotation of short reads in R. Bioinformatics 31, 1130–1132 (2015).

    Article  CAS  Google Scholar 

  52. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  53. Au, K.F., Jiang, H., Lin, L., Xing, Y. & Wong, W.H. Detection of splice junctions from paired-end RNA-seq data by SpliceMap. Nucleic Acids Res. 38, 4570–4578 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Schübeler, A. Krebs, R. Ivanek and T.C. Roloff for feedback on the manuscript. We gratefully acknowledge funding from the Novartis Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

D.G., L.B. and M.B.S. designed the study; D.G., L.B., M.F. and M.B.S. analyzed the data. L.B., D.G. and M.B.S. wrote the manuscript.

Corresponding authors

Correspondence to Dimos Gaidatzis, Lukas Burger or Michael B Stadler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Cummulative distributions for Δintron and Δexon separately for miR-targets and non-targets for the experiments in Figure 4ab (a) and in Figure 4c (b).

We tested statistically if the shift between miR-targets and non-targets is different in Δexon compared to Δintron by calculating the P-value for the interaction term in a two-way anova on the observed log2 fold changes given the miRNA target status (no site, site) as well as the region type (exon, intron). The resulting P-values are depicted in each panel.

Supplementary information

Supplementary Text and Figures

Integrated Supplementary Figure Template with Supplementary Figure 1 (PDF 119 kb)

Supplementary pdf

Supplementary Table 1: GEO identifiers and literature references of datasets used in this study. (XLS 30 kb)

Supplementary Scripts 1 and 2

Supplementary Scripts 1 and 2 (Supplementary_Scripts.tar) (TAR 10 kb)

Supplementary Data 1

Supplementary Data 1: Lists of non-overlapping genes (hg18 and mm9 assemblies, stranded and non-stranded protocols) used in this study (0.2MB). (TAR 180 kb)

Supplementary Data 2

Supplementary Data 2: Data for Figure 2 (7.7MB) (TAR 7870 kb)

Supplementary Data 3

Supplementary Data 3: Data for Figure 3 (1.0MB) (TAR 1010 kb)

Supplementary Data 4

Supplementary Data 4: Data for Figure 4 (4.8MB) (TAR 4820 kb)

Supplementary Data 5

Supplementary Data 5: Data for Figure 5 (7.0MB) (TAR 7070 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaidatzis, D., Burger, L., Florescu, M. et al. Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation. Nat Biotechnol 33, 722–729 (2015). https://doi.org/10.1038/nbt.3269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt.3269

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing