Supplementary Figure 7: Summary of electrophysiological parameters for P1S5D cultures in long-term culture maintained in the absence of small molecules. | Nature Biotechnology

Supplementary Figure 7: Summary of electrophysiological parameters for P1S5D cultures in long-term culture maintained in the absence of small molecules.

From: Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells

Supplementary Figure 7

(a) Illustration of the P1S5D+none treatment analyzed in b,c for increasing levels of maturation upon further differentiation. (c) Time course quantitative analysis of electrophysiological properties of P1S5D+none conditions through day 37. Note that as time proceeded, resting membrane potential became hyperpolarized, input resistance decreased, Na+ channel current increased, action potential threshold decreased and the maximum firing frequency increased. Statistics was carried out first using ordinary one-way ANOVA to determine if statistically significant differences exist among the means of each group: F=0.3222, P=0.8093, R2=0.0248 (REM); F=7.554, P=0.0023, R2=0.5862 (half-width); F=0.7654, P=0.5209, R2=0.0560 (rising Tau); F=4.88, P=0.006, R2=0.2891 (input resistance); F=7.364, P=0.0005, R2=0.3676 (frequency). Then the Dunnett’s multiple comparison test was used to compare mean values of each group to day 16. Only those comparisons that are significant were marked on the graph. Error bars represent s. e. m. * P<0.05, ** P<0.01, *** P<0.001.

Back to article page